考虑质量比影响的串列双圆柱涡激振动发电装置三维数值模拟研究

王家正1, 孙洪源1, 林海花1, 徐强2, 刘德鑫1, 苗瑾1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 8-17.

PDF(2350 KB)
PDF(2350 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 8-17.
论文

考虑质量比影响的串列双圆柱涡激振动发电装置三维数值模拟研究

  • 王家正1,孙洪源1,林海花1,徐强2,刘德鑫1,苗瑾1
作者信息 +

Numerical simulation study on a dual-cylinder vortex-induced vibration power generation device considering the influence of mass ratio

  • WANG Jiazheng1,SUN Hongyuan1,LIN Haihua1,XU Qiang2,LIU Dexin1,MIAO Jin1
Author information +
文章历史 +

摘要

双圆柱涡激振动发电装置是一种利用海流能发电的新型能源装置。本文使用Fluent模拟了双圆柱涡激振动发电装置的水动力特性。利用UDF和动网格技术实现了圆柱振子的流固耦合模拟,分析圆柱振子的涡激振动特性。本文首先进行了网格和时间步长的无关性验证,证明了该数值模拟的准确性;其次,从位移时程曲线、幅值、频率等三个方面分析圆柱振子的涡激振动特性。通过对等质量比下串列双圆柱涡激振动发电装置圆柱振子的获能功率及能量转换效率的分析,研究质量比对双圆柱涡激振动发电装置的俘获能特性的影响。研究表明:在质量比为m*=3、4、5的下游圆柱的横流向振幅随约化速度的增加而逐渐大于上游圆柱的横流向振幅;不同质量比下的双圆柱振子的横流向无量纲振幅均呈现随约化速度的增加而增加后又减小的趋势;质量比m*=4时,上、下游圆柱的能量转换效率最高,分别为32.6%、22.8%;在质量比m*=5时,下游圆柱的能量转换效率最高,为30.5%。

Abstract

The tandem circular cylinder vortex-induced vibration power generation device is a novel energy device that harnesses the power of ocean currents for electricity generation. In this paper, Fluent was used to simulate the hydrodynamic characteristics of the tandem circular cylinder vortex-induced vibration power generation device. The flow-structure coupling simulation of the cylinder oscillator was achieved using UDF and dynamic mesh technology to analyze the vortex-induced vibration characteristics of the cylinder oscillator. This paper first conducted grid and time step independence verification to demonstrate the accuracy of the numerical simulation. Subsequently, the vortex-induced vibration characteristics of the cylinder oscillator were analyzed from three aspects: displacement time history, amplitude, and frequency. Through the analysis of the energy harvesting power and energy conversion efficiency of the cylinder oscillator in a tandem circular cylinder vortex-induced vibration power generation device with equal mass ratio, the energy capture characteristics of the tandem circular cylinder vortex-induced vibration power generation device were studied. The research indicates that for downstream cylinders with a mass ratio of m*=3, 4, and 5, the transverse amplitude gradually becomes greater than that of the upstream cylinder with an increase in reduced velocity. The dimensionless transverse amplitude of the tandem circular cylinder oscillators under different mass ratios shows a trend of increasing with the increase in reduced velocity and then decreasing. When the mass ratio is m*=4, the energy conversion efficiency of the upstream and downstream cylinders is the highest, at 32.6% and 22.8%, respectively. When the mass ratio is m*=5, the energy conversion efficiency of the downstream cylinder is the highest, at 30.5%.

关键词

海流能 / 涡激振动 / 流固耦合 / 能量获取 / 数值模拟

Key words

ocean current energy / fluid structure interaction / vortex-induced vibration / energy acquisition / numerical simu-lation

引用本文

导出引用
王家正1, 孙洪源1, 林海花1, 徐强2, 刘德鑫1, 苗瑾1. 考虑质量比影响的串列双圆柱涡激振动发电装置三维数值模拟研究[J]. 振动与冲击, 2024, 43(14): 8-17
WANG Jiazheng1, SUN Hongyuan1, LIN Haihua1, XU Qiang2, LIU Dexin1, MIAO Jin1. Numerical simulation study on a dual-cylinder vortex-induced vibration power generation device considering the influence of mass ratio[J]. Journal of Vibration and Shock, 2024, 43(14): 8-17

参考文献

[1] 王传崑.我国海洋能资源的初步分析[J]. 海洋工程, 1984(02): 58-67. WANG Chuan-kun. Preliminary Analysis of China's Marine Energy Resources[J]. Ocean Engineering, 1984(02): 58-67. [2] 邓隐北, 熊雯. 海洋能的开发与利用[J]. 可再生能源, 2004(03): 70-72. DENG Yin-bei, XIONG Wen. Development and Utilization of Marine Energy[J]. Renewable Energy, 2004(03): 70-72. [3] SUN H Y, WANG J Z, LIN H H, et al. Numerical study on a cylinder vibrator in the hydrodynamics of a wind–wave combined power generation system under different mass ratios[J]. Energies, 2022, 15(24): 9265. [4] 王福军. 计算流体动力学分析:CFD软件原理与应用[M]. 清华大学出版社, 2004. WANG Fu-jun. Computational Fluid Dynamics Analysis: Principles and Applications of CFD Software[M]. Tsinghua University Press, 2004. [5] 高云, 杨家栋, 邹丽等. 表面粗糙度对圆柱体涡激振动响应特性影响数值研究[J]. 振动与冲击, 2018, 37(09): 37-43. GAO Yun, YANG Jia-dong, ZOU Li, et al. Effects of surface rough-ness on vortex induced vibration features of a circular cylinder. Journal of vibration and shock, 2018, 37(09): 37-43. [6] 高云, 张壮壮, 杨斌等.圆柱体横流与顺流方向涡激振动耦合模型研究[J]. 振动与冲击, 2020, 39(11): 22-30. GAO Yun, ZHANG Zhuang-zhuang, YANG Bin, et al. The study on cross-flow and in-line vortex-induced vibration coupled model of a circular cylinder. Journal of vibration and shock, 2020, 39(11): 22-30. [7] 练继建, 燕翔, 刘昉. 流致振动能量利用的研究现状与展望[J]. 南水北调与水利科技, 2018, 16(01): 176-188. Lian Ji-jian, Yan Xiang, Liu Fang. Current Research and Prospects on Energy Harvesting from Flow-Induced Vibrations[J]. South-to-North Water Diversion and Water Science, 2018, 16(01): 176-188. [8] 周斌珍, 胡俭俭, 谢彬等. 风浪联合发电系统水动力学研究进展[J]. 力学学报, 2019, 51(06):1641-1649. ZHOU Bin-zhen, HU Jian-jian, XIE Bin, et al. Research progress in hydrodynamics of wind-wave combined power generation system[J]. Chinese journal of theoretical and applied mechanics, 2019, 51(6): 1641-1649. [9] 孙海, 白旭. 基于流致振动的海流能发电技术及研究现状[J].船舶工程, 2023, 45(01): 18-26. SUN Hai, BAI Xu. Tidal Current Energy Generation Technology and Research Status Based on Vortex-Induced Vibration[J]. Ship Engi-neering, 2023, 45(01): 18-26. [10] 杜小振, P. A. Mbango-Ngoma, 常恒等. 流致涡激振动压电发电风能采集技术模拟研究[J].振动与冲击,2022,41(23):168-174+200. DU Xiao-zhen, P. A. Mbango-Ngoma, CHANG Heng, et al. Wind energy collection technology simulation with flow-induced VIV piezoelectric film for power generation[J]. Journal of vibration and shock, 2022, 41(23): 168-174+200. [11] HONG Y, CHOI Y, LEE J, et.al. Vortex-induced motion of a deep-draft semi-submersible in current and waves[C]// Proceed-ings of the Eighteenth (2008) International Offshore and Polar Engineering Conference. Vancouver, BC, Canada, 2008: 453-459. [12] 黄浩博, 曹迪, 周志勇等. 基于涡激振动的压电风能收集器研究进展[J/OL].力学学报:1-15[2023-11-01]. HUANG Hao-bo, CAO Di, ZHOU Zhi-yong, et al. Research pro-gress of piezoelectric wind energy harvesters based on vortex-induced vibration[J/OL]. Chinese journal of theoretical and applied mechanics: 1-15[2023-11-01]. [13] Trim A D, Braaten H, Lie H, et al. Experimental investigation of vortex-induced vibration of long marine risers[J]. Journal of fluids and structures, 2005, 21(3): 335-361. [14] BERNITSAS M M, RAGHAVAN K, BEN-SIMON Y, et al. VIVACE(Vortex Induced Vibration Aquatic Clean Energy):A new concept in generation of clean and renewable energy from fluid flow[J]. Journal of offshore mechanics and arctic engi-neering, 2008, 130(04):041101. [15] BERNITSAS M M, RAGHAVAN K. Fluid motion energy con-verter: U.S. Patent 7,493,759[P]. 2009-2-24. [16] 杜晓庆, 唐晨馨, 赵燕等. 两类串列圆柱涡激振动的质量比效应[J].振动与冲击, 2022,41(06):160-168. DU Xiao-qing, TANG Chen-xin, ZHAO Yan, et al. Effects of mass ratio on the vortex-induced vibration of two types of tandem circular cylinders[J]. Journal of vibration and shock, 2022, 41(06): 160-168. [17] 杨骁, 赵燕, 杜晓庆等. 双圆柱尾流致涡激振动的质量比效应及其机理[J].振动工程学报, 2020, 33(01): 24-34. YANG Xiao, ZHAO Yan, DU Xiao-qing, et al. Effects of mass ratio on wake-induced vibration of two tandem circular cylinders and its mechanism[J]. Journal of Vibration Engineering, 2020, 33(01): 24-34. [18] Tofa M M, Maimun A, Ahmed Y M, et al. Numerical study of the flow-induced vibration of two equal-diameter cylinders in tandem with varying the mass ratio[C]//International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, 2014, 45400 [19] 刘旭菲, 陈威霖, 及春宁. 质量比对近壁面两向自由度圆柱涡激振动的影响[J].振动与冲击, 2022, 41(12): 267-274. LIU Xu-fei, CHEN Wei-lin, JI Chun-ning. Effects of mass ratio on vortex-induced vibrations of a two degree-of-freedom near-wall cyl-inder[J]. Journal of vibration and shock, 2022, 41(12): 267-274. [20] 白旭, 仇北平, 乐智斌. 圆柱体涡激振动海流能捕获效率影响参数分析[J]. 可再生能源, 2017. 35(05): 784-790. Bai Xu, Qiu Bei-ping, Le Zhi-bin. Parameter Analysis of Circular Cylinder Vortex-Induced Vibration for Marine Current Energy Capture Efficiency[J]. Renewable Energy, 2017, 35(05): 784-790. [21] 贾晓荷. 单圆柱及双圆柱绕流的大涡模拟[D]. 上海交通大学, 2008. JIA Xiao-he. Large eddy simulation of flow around one and two circular cylinders[D]. Shanghai Jiaotong University, 2008. [22] MENEGHINI J R, SALTARA F, SIQUEIRA C L R, et al. Nu-merical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangement[J]. Journal of Fluids and Structures, 2001, 15(2): 327–350. [23] 于定勇, 刘洪超, 王昌海. 不等直径串列双圆柱体绕流的数 值模拟 [J]. 中国海洋大学学报 (自然科学版), 2012, 42(Z2): 160–165. YU Ding-Yong, LIU Hong-Chao, WANG Chang-Hai. Numerical simulation of viscous flow past two tandem circular cylinders of different diameters[J]. Periodical of Ocean University of China, 2012(Z2): 160-165.

PDF(2350 KB)

Accesses

Citation

Detail

段落导航
相关文章

/