液滴碰撞超疏水表面上附着不相溶液滴机理研究

廖斌, 张龙飞, 卜洋, 李旋旋, 林欣, 汪超, 陈善群

振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 80-90.

PDF(2710 KB)
PDF(2710 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 80-90.
论文

液滴碰撞超疏水表面上附着不相溶液滴机理研究

  • 廖斌,张龙飞,卜洋,李旋旋,林欣,汪超,陈善群
作者信息 +

Mechanism of a drop impact on an another immiscible one sitting on the superhydrophobic surface

  • LIAO Bin,ZHANG Longfei,BU Yang,LI Xuanxuan,LIN Xin,WANG Chao,CHEN Shanqun
Author information +
文章历史 +

摘要

以数值模拟为主要手段对液滴碰撞超疏水表面上附着不相溶液滴演变过程及内在机理进行了系统性的研究工作。首先,发掘出附着模式、弹开I模式以及弹开II模式等三种液滴碰撞的典型演变模式;其次,从能量角度揭示了Weber数(We)、Bond数(Bo)以及Ohnesorg数(Oh)等无量纲参数对于液滴碰撞动力学行为的影响规律;最后,建立了液滴碰撞典型演变模式与We、Bo、Oh等无量纲参数的依赖关系图谱。结果表明,碰撞液滴之间的能量传递、转换以及粘性耗散直接影响液滴碰撞的动力学行为;随着Oh的减小、Bo的减小以及We的增大,液滴碰撞典型演变模式出现从附着模式到弹开模式的转捩;We-Oh对液滴碰撞典型演变模式的影响规律与We-Bo近乎一致。

Abstract

In this paper, the evolution of a drop impact on an another immiscible one sitting on the superhydrophobic surface were systematically studied as well as the intrinsic mechanism. Three typical evolution patterns of drop collision, such as attachment mode, bounce-off I mode, and bounce-off II mode, were verified by the numerical simulations. Based on the energy budget, the influence of Weber number (We), Bond number (Bo), and Ohnesorg number (Oh) on the dynamical behaviors of drop collision was revealed. In addition, the regime maps of typical evolution patterns of drop collision with the above dimensionless parameters were established. It was found that energy transfer, conversion, and viscous dissipation between the colliding drops directly affect the dynamical behaviors of drop collision. With the decrease of Oh, the decrease of Bo, and the increase of We, the typical evolution pattern of drop collision shows a transition from the attachment mode to the bounce-off mode. Finally, the influence law of We-Oh on the typical evolution pattern of drop collision is approximately the same as We-Bo.

关键词

界面 / 液滴碰撞 / 无量纲参数 / 能量 / 超疏水表面

Key words

interface / drop collision / dimensionless parameters / energy / superhydrophobic surface

引用本文

导出引用
廖斌, 张龙飞, 卜洋, 李旋旋, 林欣, 汪超, 陈善群. 液滴碰撞超疏水表面上附着不相溶液滴机理研究[J]. 振动与冲击, 2024, 43(14): 80-90
LIAO Bin, ZHANG Longfei, BU Yang, LI Xuanxuan, LIN Xin, WANG Chao, CHEN Shanqun. Mechanism of a drop impact on an another immiscible one sitting on the superhydrophobic surface[J]. Journal of Vibration and Shock, 2024, 43(14): 80-90

参考文献

[1] Watson G S, Gellender M, Watson J A. Self-propulsion of dew drops on lotus leaves: a potential mechanism for self cleaning[J]. Biofouling, 2014, 30(3–4): 427–434. [2] Bergeron V, Bonn D, Martin J Y, et al. Controlling droplet deposition with polymer additives[J]. Nature, 2000, 405: 772–775. [3] Damak M, Mahmoudi S R, Hyder M N, et al. Enhancing droplet deposition through in-situ precipitation[J]. Nature Communications, 2016, 7: 12560. [4] 任帅. 直流电场环境中仿生超疏水绝缘涂层表面液滴的电致运动特性研究[D]. 武汉: 华中科技大学, 2021. [5] Wu Q S, Yan H, Chen L, et al. Bio-inspired active self-cleaning surfaces via filament-like sweepers array[J]. Advanced Materials, 2023, 35(5): 2212246. [6] Perumanath S, Pillai R, Borg M K. Contaminant removal from nature’s self-cleaning surfaces [J]. Nano Letters, 2023, 23(10): 4234–4241. [7] 侯文卿. 可控微结构表面液滴冻结过程及冰粘附特性研究[D]. 南京: 南京航空航天大学, 2020. [8] Zhou L, Liu R D, Yi X. Research and development of anti-icing/deicing techniques for vessels: Review[J]. Ocean Engineering, 2022, 260: 112008. [9] He Z W, Jamil M I, Li T, et al. Enhanced surface icephobicity on an elastic substrate[J]. Langmuir, 2022, 38(1): 18–35. [10] Lohse D. Fundamental fluid dynamics challenges in inkjet printing[J]. Annual Review of Fluid Mechanics, 2022, 54: 349–382. [11] 陈建魁, 李顺博, 尹周平, 金一威, 黄萌萌. 柔性电子喷印制造液滴沉积控制研究综述[J]. 华中科技大学学报(自然科学版), 2022, 50(12): 75– 88. Chen Jiankui, Li Shuobo, Yin Zhouping, Jin Yiwei, Huang Mengmeng. Review of droplet deposition control in flexible electronic inkjet printing manufacturing[J]. Journal of University of Science and Technology (Natural Science Edition), 2022, 50(12): 75– 88. [12] 林坚普, 张胜杰, 曹项红, 叶芸, 郭太良. 基于体积方差法控制多喷嘴喷射墨滴均匀性[J]. 光学学报, 2023, 43(10): 1031002. Lin Jianpu, Zhang Shengjie, Cao Xainghong, Ye Yun, Guo Tailiang. Control of multi-nozzle inkjet droplet uniformity based on volume variance[J]. Acta Optica Sinica, 2023, 43(10): 1031002. [13] 骆洪亮. 定容弹内燃料高压喷雾雾化与壁面耦合作用动力学特性的实验研究[D]. 秦皇岛: 燕山大学,2021. [14] Maliha M, Stumpf B, Beyer F, et al. Optical investigation on the interaction between a fuel-spray and an oil wetted wall with the focus on secondary droplets[J]. International Journal of Engine Research, 2023, 24(4): 1578-1588. [15] 张春超, 潘艳秋, 杜宇杰, 高石磊, 俞路. 喷雾冷却中液滴撞击带气泡液膜的数值模拟[J]. 化工进展, 2022, 41(4): 1735–1741. Zhang Chunchao, Pan Yanqiu, Du Yujie, Gao Shilei, Yu Lu. Numerical simulation of droplet impacting liquid film with bubbles in spray cooling[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1735–1741. [16] 孙莉杰. 复杂表面上的液滴动力学行为研究[D]. 成都: 电子科技大学. [17] Worthington, A. M. A second paper on the forms assumed by drops of liquids falling vertically on a horizontal plate[J]. Proceedings of the Royal Society of London, 1876, 25(171–178): 261–272. [18] Yarin, A L. Drop impact dynamics: splashing, spreading, receding, bouncin[J]. Annual Review of Fluid Mechanics, 2006, 38(1): 159–192. [19] Josserand C, Thoroddsen S T. Drop impact on a solid surface[J]. Annual Review of Fluid Mechanics, 2016, 48(1): 365–391. [20] Khojasteh D, Kazerooni M, Salarian S, et al. Droplet impact on superhydrophobic surfaces: A review of recent developments[J]. Journal of Industrial & Engineering Chemistry, 2016, 42: 1–14. [21] Moghtadernejad S, Lee C, Jadidi M. An introduction of droplet impact dynamics to engineering students[J]. Fluids, 2020, 5(3): 107. [22] Rioboo R, Tropea C, Marengo M. Outcomes from a drop impact on solid surfaces[J]. Atomization and Sprays, 2001, 11(2): 155–166. [23] Xu L, Zhang W W, Nagel S R. Drop splashing on a dry smooth surface[J]. Physical Review Letters, 2005, 94(18): 184505. [24] Tang C L, Qin M X, Weng X Y, et al. Dynamics of droplet impact on solid surface with different roughness[J]. International Journal of Multiphase Flow, 2017, 96: 56–69. [25] Eggers J, Fontelos M A, Josserand C, et al. Drop dynamics after impact on a solid wall: Theory and simulations[J]. Physics of Fluids, 2010, 22(6): 062101. [26] Antkowiak A, Audoly B, Josserand C, et al. Instant fabrication and selection of folded structures using drop impact[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(26): 10400–10404. [27] Lee J S, Weon B M, Je J H, et al. How does an air film evolve into a bubble during drop impact?[J]. Physical Review Letters, 2012, 109(20): 204501. [28] Pittoni P G, Lin Y C, Wang R J, et al. Bubbles entrapment for drops impinging on polymer surfaces: The roughness effect[J]. Experimental Thermal & Fluid Science, 2015, 62: 183–191. [29] Stevens C S. Scaling of the splash threshold for low-viscosity fluids[J]. Europhysics Letters, 2014, 106(2): 24001. [30] Yi N, Huang B, Dong L, et al. Temperature-induced coalescence of colliding binary droplets on superhydrophobic surface[J]. Scientific Reports, 2014, 4: 4303. [31] Damak M, Varanasi K. Expansion and retraction dynamics in drop-on-drop impacts on nonwetting surfaces[J]. Physical Review Fluids, 2018, 3(9): 093602. [32] Ramírez-Soto O, Sanjay V, Lohse D, et al. Lifting a sessile oil drop from a superamphiphobic surface with an impacting one[J]. Science Advance, 2020, 6(34): eaba4330. [33] Somwansh P M, Cheverda V V, Muralidhar K, et al. Understanding vertical coalescence dynamics of liquid drops over a superhydrophobic surface using high‑speed orthographic visualization[J]. Experiments in Fluids, 2022, 63: 47. [34] Popinet S. An accurate adaptive solver for surface-tension-driven interfacial flows[J]. Journal of Computational Physics, 2009, 228: 5838–5866. [35] Agbaglah G, Deegan R D. Growth and instability of the liquid rim in the crown splash regime[J]. Journal of Fluid Mechanics, 2014, 752: 485–496. [36] López-Herrera J M, Popinet S, Castrejón-Pita A A. An adaptive solver for viscoelastic incompressible two-phase problems applied to the study of the splashing of weakly viscoelastic droplets[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 264: 144–158. [37] He C, Xia X, Zhang P. Vortex-dynamical implications of nonmonotonic viscous dissipation of off-center droplet bouncing[J]. Physics of Fluids, 2020, 32: 032004. [38] Popinet S. Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries[J]. Journal of Computational Physics, 2003, 190(2): 572–600. [39] Sanjay V, Lakshman S, Chantelot P, et al. Drop impact on viscous liquid films[J]. Journal of Fluid Mechanics, 2023, 958: A25.

PDF(2710 KB)

159

Accesses

0

Citation

Detail

段落导航
相关文章

/