中国空间站松不脱螺栓锁紧隔振器频率漂移建模与试验

何柯达1, 李青1, 2, 刘磊1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 1-10.

PDF(3422 KB)
PDF(3422 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 1-10.
论文

中国空间站松不脱螺栓锁紧隔振器频率漂移建模与试验

  • 何柯达1,李青1,2,刘磊1
作者信息 +

Modeling and tests for frequency drift of vibration isolator locked with unloosening bolt on China Space Station

  • HE Keda1, LI Qing1,2, LIU Lei1
Author information +
文章历史 +

摘要

中国空间站(以下简称空间站)大量科学仪器设备需要松不脱螺栓锁紧。针对空间站主动隔振器研制过程中松不脱螺栓锁紧诱发的频率漂移问题,探索了空间站主动隔振器锁紧状态非线性连接动力学机理建模与试验验证。对基于松不脱螺栓的隔振器锁紧释放装置进行力学分析,并根据松不脱螺栓接触面应力的非线性分布建立基于Iwan模型的系统等效动力学模型,分析动力学响应的非线性特性。研制空间站主动隔振器样机进行正弦振动试验,验证所建立动力学模型的准确性和有效性,为空间站精密科学设备环境适应性设计提供参考。

Abstract

A large number of scientific instruments and equipment in the space station need to be locked by unloosening bolts. Aiming at the problem of frequency drift induced by unloosening bolt locking during the development of active vibration isolator for space station, the dynamic mechanism modeling and experimental verification of nonlinear connection of active vibration isolator for space station in locking state are explored.The mechanical analysis of the locking release device of the isolator based on the unloosening bolt is carried out, and the equivalent dynamic model of the system based on the Iwan model is established according to the nonlinear distribution of the stress on the contact surface of the unloosening bolt, and the nonlinear characteristics of the dynamic response are analyzed.The prototype of the active vibration isolator of the space station is developed for sinusoidal vibration test to verify the accuracy and effectiveness of the established dynamic model, which provides a reference for the environmental adaptability design of the space station precision scientific equipment.

关键词

空间站 / 松不脱螺栓 / 频率漂移 / 非线性 / 振动试验

Key words

space station / unloosening bolt / frequency drift / nonlinearity / vibration test

引用本文

导出引用
何柯达1, 李青1, 2, 刘磊1. 中国空间站松不脱螺栓锁紧隔振器频率漂移建模与试验[J]. 振动与冲击, 2024, 43(15): 1-10
HE Keda1, LI Qing1, 2, LIU Lei1. Modeling and tests for frequency drift of vibration isolator locked with unloosening bolt on China Space Station[J]. Journal of Vibration and Shock, 2024, 43(15): 1-10

参考文献

[1] Meng H, Xi C, Jie F, et al. The space cold atom interferometer for testing the equivalence principle in the China Space Station[J]. npj Microgravity, 2023, 9(1): 58. [2] 申文斌, 张朋飞, 申子宇等. 中国空间站微波链路引力红移检验仿真实验[J]. 武汉大学学报(信息科学版), 2022, 47(06): 849-854. SHEN Wen-bin, ZHANG Peng-fei, SHEN Zi-yu, et al. Simulation Test of Gravitational Redshift by Microwave Links of China Space Station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 849-854. [3] 王翔, 王为. 我国天宫空间站研制及建造进展[J]. 科学通报, 2022, 67(34): 4017-4028. WANG Xiang, WANG Wei. Development and construction progress of the Tiangong space station in China. Chinese Science Bulletin, 2022, 67: 4017–4028. [4] 张晓武, 郑会龙, 王琨等. 中国空间站燃烧科学实验系统燃烧室设计与分析[J]. 空间科学学报, 2021, 41(02): 301-309. ZHANG Xiao-wu, ZHENG Hui-long, WANG Kun, et al. Combustion Chamber Design and Analysis of the Space Station Combustion Science Experimental System[J]. Chinese Journal of Space Science, 2021, 41(2): 301-309. [5] 张伟, 侯永青, 夏侨丽等. 空间站维修设计与实践[J]. 中国科学:技术科学, 2022, 52(09): 1332-1344. ZHANG Wei, HOU Yong-qing, XIA Qiao-li, et al. Maintenance design and practice for the China space station. SCIENTIA SINICA Technologica, 2022, 52: 1332–1344. [6] 巩浩, 刘检华, 冯慧华. 螺纹连接松动机理和防松方法研究综述[J]. 机械工程学报, 2022, 58(10): 326-347+360. GONG Hao, LIU Jian-hua, FENG Hui-hua. Research Review on Loosening Mechanisms and Anti-loosening Methods of Threaded Fasteners[J]. Journal of Mechanical Engineering, 2022, 58(10): 326-347+360. [7] 董得义, 李志来, 杨利伟等. 防松胶对螺纹连接预紧力影响试验研究[J]. 振动与冲击, 2015, 34(22): 121-124+137. DONG De-yi, LI Zhi-lai, YANG Li-wei, et al. Experiment study on the influence of locking adhesive on the preload of screw thread connection[J]. 2015. 34(22): 121-124+137. [8] 钱志英, 韩世泽, 马为佳等. 航天器振动试验中的频率漂移现象研究[J]. 航天器环境工程, 2018, 35(04): 342-347. QIAN Zhi-ying, HAN Shi-ze, MA Wei-jia, et al. Natural frequency drift in the vibration test of spacecraft[J]. Spacecraft Environment Engineering, 2018, 35(4): 342-347. [9] Minh-Van T, Mohammed S E, Sylvain M, et al. Vibrational behavior of cross-laminated timber-concrete composite beams using notched connectors[J]. Engineering Structures, 2021, 249: 113309. [10] 贾东永, 雷剑宇, 孙维等. 货运飞船柔性货包装载及建模技术研究[J]. 大连理工大学学报, 2022, 62(04): 411-418. JIA Dong-yong, LEI Jian-yu, SUN Wei, et al. Packaging and modeling technology research of flexible packages on cargo spacecraft[J]. Journal of Dalian University of Technology, 2022, 62(04): 411-418. [11] 于安斌,赵应龙,侯九霄. 含弹性连接和夹层流体的双层壳振动传递特性研究[J]. 振动与冲击, 2023, 42(8): 167-176. YU An-bin, ZHAO Ying-long, HOU Jiu-xiao. A study on vibration transmission characteristics of double-layer shell with elastic connection and interlayer water. JOURNAL OF VIBRATION AND SHOCK, 2023, 42(8): 167-176. [12] Smith K, et al. Modal test of the Cassini spacecraft[C] //15th International Modal Analysis Conference, IMAC. Part1, 1997: 804-810. [13] 李太平, 翁海宽, 江浩等. 预紧力对系统频率漂移的影响[J]. 航天器环境工程, 2017, 34(06): 636-641. LI Tai-ping, WENG Hai-kuan,JIANG Hao,et al. The influence of preload on system frequency variations[J]. Spacecraft Environment Engineering, 2017, 34(6): 636-641. [14] Iwan W D. A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response[J]. Journal of Applied Mechanics, 1966, 33(4): 893-900. [15] Chen J, Zhang J, Hong J, et al. Modeling tangential contact of lap joints considering surface topography based on Iwan model[J]. Tribology International, 2019, 137: 66-75. [16] Beaudoin M A, Behdinan K. Analytical lump model for the nonlinear dynamic response of bolted flanges in aero-engine casings[J]. Mechanical Systems and Signal Processing, 2019, 115: 14-28. [17] 刘晓峰, 孙伟, 方自文. 基于非均匀分布复弹簧单元的螺栓连接薄板结构动力学有限元建模[J]. 振动与冲击, 2021, 40(13): 111-119. LIU Xiao-feng, SUN Wei, FANG Zi-wen. Finite element dynamic modeling for bolted thin plate structure based on complex spring element with non-uniform distribution. JOURNAL OF VIBRATION AND SHOCK, 2021, 40(13): 111-119. [18] Wang D. Identification for joint interfaces with correlation analysis of instantaneous dynamics[J]. Archive of Applied Mechanics, 2020, 90(1): 187-198. [19] Lacayo R, Pesaresi L, Groß J, et al. Nonlinear modeling of structures with bolted joints: a comparison of two approaches based on a time-domain and frequency-domain solver[J]. Mechanical Systems and Signal Processing, 2019, 114: 413-438. [20] Kaiwen GUO, Tinglian ZHANG, Huang YUAN. Experimental and computational investigations of nonlinear frictional behavior in threaded fasteners[J]. Tribology International, 2021,154: 106737. [21] Yunxu SHI, Zhe WU, Wei LIU, et al. Three-to-One Internal Resonance of L-Shaped Multi-Beam Structure with Nonlinear Joints[J]. Journal of Marine Science and Engineering, 2022, 10(10): 1461. [22] 刘汉武, 张华, 方贤亮. 含非线性特性的卫星压紧释放机构动力学研究[J].中国空间科学技术, 2021, 41(05): 57-64. LIU Han-wu, ZHANG Hua, FANG Xian-liang. Study on dynamics of satellite hold-down and release mechanism with nonlinear characteristics[J]. Chinese Space Science and Technology, 2021, 41(5): 57-64. [23] Segalman D J. Modelling joint friction in structural dynamics[J]. Structural Control & Health Monitoring, 2006, 13(1): 430-453.

PDF(3422 KB)

Accesses

Citation

Detail

段落导航
相关文章

/