下卧软弱夹层地基ALE法强夯加固数值分析

李岳1,彭梦凯1,蔡靖1,2,刘文俊3,水伟厚4,董炳寅5

振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 142-149.

PDF(3278 KB)
PDF(3278 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 142-149.
论文

下卧软弱夹层地基ALE法强夯加固数值分析

  • 李岳1,彭梦凯1,蔡靖1,2,刘文俊3,水伟厚4,董炳寅5
作者信息 +

Numerical simulation for dynamic compaction reinforcement of underlying soft interlayer foundation with ALE method

  • LI Yue1, PENG Mengkai1, CAI Jing1,2, LIU Wenjun3, SHUI Weihou4, DONG Bingyin5
Author information +
文章历史 +

摘要

随着高能级强夯快速发展,软弱夹层对地基加固影响问题凸显,其吸能缓冲作用机理尚不清晰,夯击参数选取经验性强。基于现场试验和ALE法强夯加固仿真开展地基应力波传播过程研究,探讨下卧软弱夹层对加固效果影响机理。对夯击能级、夹层埋深、夹层厚度等因素进行参数研究,改进强夯参数设计流程。结果表明,软弱夹层对夯击应力波向下传播过程有迟滞作用,地基应力场在此深度内发生断层;当首击地基加固深度为1/2软弱夹层埋深时,可兼顾能级控制与施工效率需要;软弱夹层埋深大于10m或厚度超过2m时加固难度较大,需配合其他工法共同加固处理。

Abstract

With the rapid development of high-energy dynamic compaction, the impact of soft interlayer on foundation reinforcement became more notable. The energy absorption mechanism of soft interlayer was not well examined. The selection of dynamic compaction parameters was empirical-based in engineering practice. On the basis of field test results and numerical simulation of dynamic compaction by using ALE method, the propagation process of stress wave within foundation is studied in this paper. The influential mechanism due to soft interlayer on reinforcement effect is discussed. Parametric analysis of such factors, including energy level of dynamic compaction, burial depth of soft interlayer and thickness of soft interlayer, are carried out. An improved design flow of dynamic compaction parameters is then proposed. Study results shown that the existence of soft interlayer can delay downward propagation of the tamping stress wave. Faults occur in the stress field result at this depth of soft interlayer. The requirement of tamping energy control and construction efficiency can be both satisfied when the reinforcement depth of the first tamping was about half of burial depth of soft interlayer. The difficulty of foundation reinforcement became notable increased when burial depth of soft interlayer exceeds 10m or thickness of soft interlayer is over 2m. Therefore, other foundation treatment methods should be applied in combine with high-energy dynamic compaction.

关键词

强夯 / 软弱夹层 / ALE法 / 夯击参数 / 地基加固

Key words

dynamic compaction / soft interlayer / Arbitrary Lagrange Euler (ALE) / tamping parameters / foundation reinforcement

引用本文

导出引用
李岳1,彭梦凯1,蔡靖1,2,刘文俊3,水伟厚4,董炳寅5. 下卧软弱夹层地基ALE法强夯加固数值分析[J]. 振动与冲击, 2024, 43(15): 142-149
LI Yue1, PENG Mengkai1, CAI Jing1,2, LIU Wenjun3, SHUI Weihou4, DONG Bingyin5. Numerical simulation for dynamic compaction reinforcement of underlying soft interlayer foundation with ALE method[J]. Journal of Vibration and Shock, 2024, 43(15): 142-149

参考文献

[1] TSITSAS G, DIMITRIADI V, ZEKKOS D, et al. Dynamic compaction of collapsible soils–case study from a motorway project in Romania [M]. 2015. [2] WU S, WEI Y, ZHANG Y, et al. Dynamic compaction of a thick soil-stone fill: Dynamic response and strengthening mechanisms[J]. Soil Dynamics and Earthquake Engineering, 2020, 129: 105944. [3] ROLLINS K M, KIM J. Dynamic compaction of collapsible soils based on U.S. case histories[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(9): 1178-1186. [4] DU J, WU S, HOU S, et al. Deformation analysis of granular soils under dynamic compaction based on stochastic medium theory[J]. Mathematical Problems in Engineering, 2019(1): 1-10. [5] MAYNE P W, JONES J S. Impact stresses during dynamic compaction[J]. Journal of Geotechnical Engineering, 1983, 109(10): 1342-1346. [6] 苏亮, 时伟, 水伟厚, 等. 高能级强夯法处理深厚吹填砂土地基现场试验[J]. 吉林大学学报(地球科学版), 2021, 51(05): 1560-1569. SU Liang, SHI Wei, SHUI Wei-hou, et al. Field test of high energy dynamic compaction on hydraulic sandy filling[J]. Journal of Jilin University(Earth Science Edition), 2021, 51(05): 1560-1569. [7] 年廷凯, 李鸿江, 杨庆, 等. 沿海下卧软弱夹层碎石回填地基15000kN•m高能级强夯试验[J]. 岩土力学, 2010, 31(03): 689-694. NIAN Ting-kai, LI Hong-jiang, YANG Qing, et al. Experiment of high energy dynamic compaction with 15000 kN•m on a rubble fills site underlain by soft interlayer in coastal area[J]. Rock and Soil Mechanics, 2010, 31(03): 689-694. [8] 年廷凯, 水伟厚, 李鸿江, 等. 沿海碎石回填地基上高能级强夯系列试验对比研究[J]. 岩土工程学报, 2010, 32(07): 1029-1034. NIAN Ting-kai, SHUI Wei-hou, LI Hong-jiang, et al. Field tests of high energy dynamic compaction on foundation backfilled by crushed stone in coastal area[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(07): 1029-1034. [9] 贾敏才, 刘波, 周训军. 滨海含软土夹层粉细砂地基高能级强夯加固试验研究[J]. 建筑结构学报, 2019, 40(11): 240-246. JIA Min-cai, LIU Bo, ZHOU Xun-jun. Field test study of high energy dynamic compaction on marine silty fine sand deposits with soft interlayers[J]. Journal of Building Structures, 2019, 40(11): 240-246. [10] 宋修广, 孙润生, 董行, 等. 黄泛区软弱夹层结构地基强夯现场试验[J]. 建筑科学与工程学报, 2018, 35(01): 26-32. SONG Xiu-guang, SUN Run-sheng, DONG Hang, et al. Field test of foundation dynamic compaction about soft interlayer structure in Yellow River flood area[J]. Journal of Architecture and Civil Engineering, 2018, 35(01): 26-32. [11] 蔡袁强, 陈超, 徐长节. 强夯加固回填土地基的三维数值模拟[J]. 岩土力学, 2007, No.137(06): 1108-1112. CAI Yuan-qiang, CHEN Chao, XU Chang-jie. Three-dimensional numerical simulation of dynamic compaction of backfilled soil[J]. Rock and Soil Mechanics, 2007, No.137(06): 1108-1112. [12] 姚仰平, 张北战. 基于体应变的强夯加固范围研究[J]. 岩土力学, 2016, 37(09): 2663-2671. YAO Yang-ping, ZHANG Bei-zhan. Reinforcement range of dynamic compaction based on volumetric strain [J]. Rock and Soil Mechanics, 2016, 37(09): 2663-2671. [13] 姚占勇, 周冲, 蒋红光, 等. 基于帽盖模型的强夯地基应力–应变特征与有效加固范围分析[J]. 岩石力学与工程学报, 2018, 37(04): 969-977. YAO Zhan-yong, ZHOU Chong, JIANG Hong-guang, et al. Stress-strain characteristics and effective range of improvement under dynamic compaction based on capped yield hardening model [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(04): 969-977. [14] 李玉岐, 陈俊. 不同离心力下的离心机强夯试验模拟[J]. 计算机辅助工程, 2019, 28(03): 30-34. LI Yu-qi, CHEN Jun. Simulation of centrifuge dynamic compaction test under different centrifugal force [J]. Computer Aided Engineering, 2019, 28(03): 30-34. [15] Yao Zhanyong, Zhou Chong, Lin Qiqi, et al. Effect of dynamic compaction by multi-point tamping on the densification of sandy soil[J]. Computers and Geotechnics,2022,151. [16] 王一雯, 郑成, 吴卫国. 弹性楔形体入水砰击载荷及结构响应的理论计算与数值模拟研究[J]. 爆炸与冲击, 2021, 41(11): 100-115. WANG Yi-wen, ZHENG Cheng, WU Wei-guo. On slamming load and structural response of a flexible wedge via analytical methods and numerical simulations[J]. Explosion and Shock Waves, 2021, 41(11): 100-115. [17] 彭依云, 王铭明, 高长伟. 近场水下爆炸冲击波对板架结构毁伤特性研究[J]. 船舶力学, 2020, 24(08): 1081-1090. PENG Yi-yun, WANG Ming-ming, GAO Chang-wei. Research on the damage characteristics of grillage structures subjected to near-field underwater blast wave[J]. Journal of Ship Mechanics, 2020, 24(08): 1081-1090. [18] YANG Xinglin, ZHANG Guilong, ZHANG Junmiao, et al. Dynamic Response of Falling Liquid Storage Container Under Transient Impact[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35(05): 760-769. [19] LIU Shun, TANG Xiaowei, LI Jing. A decoupled Arbitrary Lagrangian-Eulerian method for large deformation analysis of saturated sand[J]. Soils and Foundations, 2022, 62(2). [20] 张智超, 刘汉龙, 陈育民, 等. 触地爆炸土体弹坑的多物质ALE法分析[J]. 解放军理工大学学报(自然科学版), 2013, 14(01): 69-74. ZHANG Zhi-chao, LIU Han-long, CHEN Yu-min, et al. Analysis of contact explosion-induced crater of soil using multi-material ALE method[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2013, 14(01): 69-74. [21] 毕庆涛, 肖昭然, 丁树云, 等. 静压桩压入过程的数值模拟[J]. 岩土工程学报, 2011, 33(S2): 74-77. BI Qing-tao, XIAO Zhao-ran, DING Shu-yun, et al. Numerical modelling of penetrating of jacked piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 74-77. [22] 刘开富, 谢新宇, 吴长富, 等. 弹塑性土质边坡的ALE方法有限元分析[J]. 岩土力学, 2011, 32(S1): 680-685. LIU Kai-fu, XIE Xin-yu, WU Chang-fu, et al. ALE method finite element analysis of elastoplastic soil slope[J]. Rock and Soil Mechanics, 2011, 32(S1): 680-685. [23] 谢新宇, 徐玉胜, 吴健, 等. 软土地基连续强夯置换碎石墩的数值分析[J]. 西北地震学报, 2011, 33(03): 249-254. XIE Xin-yu, XU Yu-sheng, WU Jiang, et al. Numerical simulation of stone column replacement by consecutive dynamic compaction in soft ground[J]. Northwestern Seismological Journal, 2011, 33(03): 249-254. [24] 徐玉胜, 胡荣华. LS-DYNA软件在强夯置换处理软土地基工程中的应用[J]. 铁道建筑, 2008(03): 74-77. XU Yu-sheng, HU Rong-hua. Application of LS-DYNA software in dynamic tamper displacement treatment of soft soil foundation[J]. Railway Engineering, 2008(03): 74-77. [25] 闫澍旺, 霍知亮. 岩土工程下沉贯入数值模拟方法研究进展[J]. 力学与实践, 2016, 38(03): 237-249+236. YAN Shu-wang, HUO Zhi-liang. Advance in numerical simulation methods for penetration in geotechnical engineering[J]. Mechanics in Engineering, 2016, 38(03): 237-249+236. [26] 刘顺, 唐小微, 栾一晓. ALE方法在沉箱码头地震液化分析的应用[J]. 工程力学, 2022, 39(05): 177-187. LIU Shun, TANG Xiao-wei, LUAN Yi-xiao. Analysis of the seismic liquefaction of caisson wharves under strong earthquakes using the ALE method[J]. Engineering Mechanics, 2022, 39(05): 177-187. [27] 詹金林, 水伟厚, 何立军. 高能级强夯加固机理的数值模拟[J]. 水利水电科技进展, 2008, 28(06): 15-19+27. ZHAN Jin-lin, SHUI Wei-hou, HE Li-jun. Research on the mechanics of high energy level dynamic compaction with numerical method[J]. Advances in Science and Technology of Water Resources, 2008, 28(06): 15-19+27. [28] 闫吉成, 余湘娟, 陈永辉等. 粉土地基强夯加固效果影响因素数值模拟研究[J]. 能源与环保, 2018, 40(02): 150-155. YAN Ji-cheng, YU Xiang-juan, CHEN Yong-hui, et al. Numerical simulation study on influencing factors of reinforcement effect of silt foundation[J]. China Energy and Environmental Protection, 2018, 40(02): 150-155. [29] 王立朝, 胡瑞林, 李耀刚等. 影响强夯加固深度的因素分析[J]. 施工技术, 2004(01): 48-49+56. WANG Li-chao, HUI Rui-lin, LI Yao-gang, et al. Study on the parameters influencing on the depth of improvement[J]. Construction Technology, 2004(01): 48-49+56. [30] 聂辉. 杂填土下卧软弱土地基强夯加固效果及质量检测[D]. 江西理工大学, 2010. NIE Hui. Reinforcement effect and quality test of soft soil foundation with mixed fill[D]. JiangXi University of Science and Technology, 2010. [31] 禹荣霞. 层状土中的桩土动力相互作用研究[D]. 湖南大学, 2012. YU Rong-xia. The research of pile soil interaction research in layered soil[D]. Hunan University, 2012. [32] 费香泽, 王钊, 周正兵. 强夯加固深度的试验研究[J]. 四川大学学报(工程科学版), 2002(04): 56-59. FEI Xiang-ze, WANG Zhao, ZHOU Zheng-bing. Model test of improvement depth of dynamic compaction[J]. Journal of Sichuan University (Engineering Science Edition), 2002(04): 56-59. [33] 何立军, 秦劭杰, 刘增华等. 25000 kN•m高能级强夯地基标贯和动探试验对比研究[J]. 地基处理, 2023, 5(04): 271-278. HE Li-jun, QIN Shao-jie, LIU Zeng-hua, et al. Comparative study on SPT and DPT of 25 000 kN•m high energy dynamic compaction foundation[J]. Journal of Ground Improvement, 2023, 5(04): 271-278.

PDF(3278 KB)

Accesses

Citation

Detail

段落导航
相关文章

/