多跨连续梁自由振动的动态有限元分析

夏桂云,刘明暕,温睿

振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 150-159.

PDF(2632 KB)
PDF(2632 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 150-159.
论文

多跨连续梁自由振动的动态有限元分析

  • 夏桂云,刘明暕,温睿
作者信息 +

Dynamic finite element analysis for free vibration of multi-span continuous beams

  • XIA Guiyun, LIU Mingjian, WEN Rui
Author information +
文章历史 +

摘要

利用Timoshenko梁振动微分方程的奇次解,建立了单元任意截面的变形、内力与结点位移的关系,取端点截面的内力得到动态有限元列式。动态有限元具有不依赖网格密度、可准确计算任意阶次的振动频率和振型等特点。利用动态有限元刚度矩阵行列式为0条件,推导出1~4跨等截面等跨径的多跨连续梁频率方程。分析了多跨连续梁的自由振动,结果表明,相应简支梁的频率为多跨连续梁的固有频率、振型经扩展后为多跨连续梁的振型;多跨连续梁的振动有第二频谱现象和梁高振动特征。

Abstract

Using the homogeneous solutions to the differential motion equation of Timoshenko beams, deformations and inner forces are expressed by the nodal displacements at arbitrary cross-section. When the nodal forces are evaluated, the dynamic finite element will be formulated. Dynamic finite element formulation can achieve arbitrary-order frequencies and vibrating modes precisely, which does not depend on the mesh density. Incorporating the algorithm of the general stiffness matrix determinant being zero, frequency equations of multi-span continuous Timoshenko beam with 1~4 spans are derived. Free vibration analyses of multi-span continuous Timoshenko beam are conducted. Results demonstrate that the frequencies of the corresponding simply-supported Timoshenko beam are all natural frequencies of multi-span continuous Timoshenko beams. The vibrating modes of the corresponding simply-supported Timoshenko beam are extended to form the vibrating modes of multi-span continuous Timoshenko beams. Multi-span continuous Timoshenko beams possess the properties of the second frequency spectrum and beam height vibration.

关键词

动态有限元 / 多跨连续梁 / 频率方程 / 模态 / 第二频谱 / 梁高振动

Key words

Dynamic finite element / multi-span continuous beam / frequency equation / mode / second frequency spectrum / beam-height vibration

引用本文

导出引用
夏桂云,刘明暕,温睿. 多跨连续梁自由振动的动态有限元分析[J]. 振动与冲击, 2024, 43(15): 150-159
XIA Guiyun, LIU Mingjian, WEN Rui. Dynamic finite element analysis for free vibration of multi-span continuous beams[J]. Journal of Vibration and Shock, 2024, 43(15): 150-159

参考文献

[1]JTG D60-2015.公路桥涵设计通用规范[S].北京:人民交通出版社股份有限公司,2015:28-29. JTG D60-2015. General specifications for design of highway bridges and culverts[S].Beijing: China Communication Press, 2015:28-29. [2]夏桂云,俞茂宏,李传习.斜桥动力特性[J].交通运输工程学报,2009,9(4):15-21. XIA Guiyun, YU Maohong, LI Chuanxi.Vibrating characteristics of skew bridge[J]. Journal of Traffic and Transportation Engineering,2009, 9(4):15-21. [3]夏桂云,李传习.考虑剪切变形影响的杆系结构理论与应用[M].北京:人民交通出版社,2008:1-2. XIA Guiyun, LI Chuanxi. Frame structure theory and its applications including the shear deformation effect[M].Beijing: China Communications Press,2008:1-2. [4] BOTTEGA W J. Engineering vibrations[M]. Boca Raton: CRC Press, 2006:36-94. [5]THOMSON W T, DAHLEH M D. Theory of vibration with applications[M].Beijing:Tsinghua University Press,2005:5-12. [6]ELISHAKOFF I, KAPLUNOV J, NOLDE E. Celebrating the centenary of Timoshenko’s study of effects of shear deformation and rotary inertia[J]. Applied of Mechanics Review, 2015,67:1-11. [7]HAN S M, BENAROYA H, Wei T. Dynamics of transversely vibrating beams using four engineering theories[J]. Journal of Sound and Vibration, 1999,225(5):935-988. [8]TIMOSHENKO S P. On the correction for shear of the differential equation for transverse vibration of prismatic bars[J]. Philosophical Magazine, 1921,41(6):744-746. [9]孙琪凯,张楠,刘潇.考虑剪切变形的连续钢-混组合梁动力特性分析[J].振动与冲击,2023,42(2):258-266. SUN Qikai, ZHANG Nan, LIU Xiao. Dynamic characteristic analysis of steel-concrete composite continuous beams considering the effect of beam shear deformation[J]. Journal of Vibration and Shock,2023,42(2):258-266. [10]COWPER G R. The shear coefficients in Timoshenko’s beam theory[J]. Journal of Applied Mechanics (ASME),1966,33:335-340. [11]胡海昌.弹性力学的变分原理与应用[M].北京:科学出版社,1983:139-144. HU Haichang. Variational Principle for Elasticity and Its Application[M]. Beijing: Science Press, 1981:139-144. [12]STEPHEN N G. The second spectrum of Timoshenko beam theory—Further assessment[J]. Journal of Sound and Vibration, 2006,292:372-389. [13]CAZZANI A, STOCHINO F, TURCO E. On the whole spectrum of Timoshenko beams. Part I: a theoretical revisitation [J]. Journal of Applied Mathematics and Physics (ZAMP), 2016,67:article 24. [14]CAZZANI A, STOCHINO F, TURCO E. On the whole spectrum of Timoshenko beams. Part II: further applications[J]. Journal of Applied Mathematics and Physics (ZAMP), 2016, 67: article 25. [15]STEPHEN N G. Timoshenko shear coefficient from a beam subjected to a gravity loading[J]. Journal of Applied Mechanics ( ASME),1980,47:87-92. [16]HUTCHINSON J R. Shear coefficients for Timoshenko beam theory[J].Journal of Applied Mechanics (ASME),2001, 68(1):87-92. [17]ZHANG Y. Frequency spectra of nonlocal Timoshenko beams and an effective method of determining nonlocal effect[J]. International Journal of Mechanical Sciences. 2017, 128: 572–582. [18]MANEVICH A I. Dynamics of Timoshenko beam on linear and nonlinear foundation: Phaserelations, significance of the second spectrum, stability[J]. Journal of Sound and Vibration, 2015, 344:209-220. [19]LOVE M A. A treatise on the mathematical theory of elasticity (fourth edition)[M]. New York: Dover, 1927:1-208. [20]陈镕,万春风,薛松涛,等.Timoshenko梁运动方程的修正及其影响[J].同济大学学报,2005,33(6):711-715. CHEN Rong,WAN Chunfeng,XUE Songtao, et.al. Modification of motion equation of Timoshenko beam and its effect[J].Journal of Tongji University,2005,33(6):711-715. (in Chinese) [21]ROSA M A, LIPPIELLO M, ELISHAKOFF I. Variational derivation of truncated Timoshenko-Ehrenfest beam theory[J].Journal of applied and computational mechanics,2022,8(3):996-1004. [22]ELISHAKOFF I, HACHE F, CHALLAMEL N. Variational derivation of governing differential equations for truncated version of Bresse-Timoshenko beams[J]. Journal of Sound and Vibration, 2018,435: 409-430. [23] ELISHAKOFF I, TONZANI G M, MARZANI A. Three alternative versions of Bresse-Timoshenko theory for beam on pure Pasternak foundation[J]. International Journal of Mechanical Sciences, 2018,149: 402-412. [24]XIA Guiyun, SHU Wenya, STANCIULESCU I. Analytical and numerical studies on the slope inertia-based Timoshenko beam[J]. Journal of Sound and Vibration, 2020,473:115227. [25]RUOCCO E, REDDY J N. Analytical solutions of Reddy, Timoshenko and Bernoulli beam models:A comparative analysis[J]. European Journal of Mechanics/A Solids,2023,99:104953. [26]CHEN Jinping, KHABAZ M K, GHASEMIAN M M. Transverse vibration analysis of double-walled carbon nanotubes in an elastic medium under temperature gradients and electrical fields based on nonlocal Reddy beam theory[J]. Materials Science and Engineering: B,2023,291:116220. [27]GONCALVES PJP, PEPLOW A, BRENNAN M J. Exact expressions for numerical evaluation of high order modes of vibration in uniform Euler-Bernoulli beams[J]. Applied Acoustics, 2018,141:371-373. [28]RICHARD B, JACQUELINE B. The model distribution and density of fibre reinforced composite beams[J]. Journal of Sound and Vibration, 2013,332(8):2000-2018. [29]宋一凡.桥梁结构动力学[M](第2版).北京:人民交通出版社,2020:223-248. SONG Yifan. Dynamics of bridge structures[M](2nd edition). Beijing: China Communications Press,2020:223-248. [30]吴晓.求双跨连续梁临界荷载及固有频率的新方法[J].工程与试验,2019,59(4):5-6. WU Xiao. New method for the critical load and natural frequency of two-span continuous beam[J]. Engineering and Test, 2019, 59(4):5-6. [31]王小岗.简谐激励下多跨连续梁振动问题的解析解[J].青海大学学报,1996,14(4):31-36. WANG Xiaogang. Analytical solution of the vibration of simple harmonic excitation of continuous beam[J]. Journal of Qinghai University, 1996,14(4):31-36. [32]袁向荣.基于连续梁振动分析的桥梁冲击系数研究[J].四川建筑科学研究,2013,39(4):190-194. YUAN Xiangrong. Study of the impact factor based on the dynamic analysis of the continuous beam[J]. Sichuan building Science,2013,39(4):190-194. [33]贺栓海,张翔,何福照.连续梁自由振动分析的比值法[J].中国公路学报,1995,8(1):71-79. HE Suanhai, ZHANG Xiang, HE Fuzhao. Ratio method of free vibration of continuous beam system[J].China Journal of Highway and Transport,1995,8(1):71-79. [34]周盛林.失谐连续双跨梁与三跨梁结构振动特性的理论和实验研究[D].北京:北京工业大学,2017:13-48. ZHOU Shenglin. Theoretical and experimental studies on the vibration characteristics of disordered two-span and three-span beams[D].Beijing: Beijing University of Technology,2017:13-48. [35]夏桂云,李传习,张建仁.多跨连续斜桥动力特性分析[J].重庆大学学报,2011,34(8):121-127. XIA Guiyun, LI Chuanxi, ZHANG Jianren. Analysis of vibrating characteristics of multi-span continuous skew bridges[J]. Journal of Chongqing University, 2011,34(8):121-127. [36]BANERJEE J R. Frequency dependent mass and stiffness matrices of bar and beam elements and their equivalency with the dynamic stiffness matrix[J]. Computers and Structures,2021,254:106616. [37]BANERJEE J R, ANANTHAPUVIRAJAH A. An exact dynamic stiffness matrix for a beam incorporating Rayleigh-Love and Timoshenko theories[J]. International Journal of Mechanical Sciences,2019,150:337-347. [38]BANERJEE J R. Free vibration of sandwich beams using the dynamic stiffness method[J]. Computers and Structures,2003,81:1915-1922. [39]ELAHI M M, HASHEMI S M. Application of operational method to develop dynamic stiffness matrix for vibration analysis of thin beams[J]. Engineering Structures,2020,224:111244. [40]周世军.朱晞.一组新的Timoshenko梁单元一致矩阵公式[J].兰州铁道学院学报,1994,13(2):1-7. ZHOU Shijun, ZHU Xi. A set of new Consistent Matrix for Formulations of Timoshenko Beam Element[J].Journal of Lanzhou Railway Institute. 1994, 13(2) :1-7 (In Chinese). [41]夏桂云,曾庆元,李传习.建立Timoshenko深梁单元的新方法[J].交通运输工程学报,2004,4(2):27-32. XIA Guiyun, ZENG Qingyuan, LI Chuanxi. New method for formulations of Timoshenko deep beam element[J]. Journal of Traffic and Transportation Engineering,2004,4(2):27-32. [42]HUANG T C. The effect of rotatory inertia and shear deformation on the frequency and normal mode equations of uniform beams with simple and conditions[J]. Journal of Applied Mechanics.1961,28,579-584. [43]ORAL S.Anisoparametric interpolation in hybrid-stress Timoshenko beam element[J]. Journal of Structural Engineering,1991,117(4):1070-1078. [44]夏逸鸣,唐敢,江世永.多分辨率Timoshenko梁单元[J].固体力学学报,2014,35(1):57-62. XIA Yiming, TANG Gan, JIANG Shiyong. A muti-resolution Timoshenko beam element formulation[J]. Chinese Journal of Solid Mechanics,2014,35(1):57-62. [45]BRONS M, THOMSON J J. Experimental testing of Timoshenko predictions of supercritical natural frequencies and mode shapes for free-free beams[J]. Journal of Sound and Vibration,2019,459:114856. [46]MONSIVAIS G, DIAZ-DE-ANDA A, FLOROS J, GUTIERREZ L, MORALES A. Experimental study of the Timoshenko beam theory predictions: Further results[J]. Journal of Sound and Vibration, 2016,375:187-199. [47]ZHANG Y. Frequency spectra of nonlocal Timoshenko beams and an effective method of determining nonlocal effect[J]. International Journal of Mechanical Sciences,2017,128:572–582. [48]MANEVICH A I. Dynamics of Timoshenko beam on linear and nonlinear foundation: Phase relations, significance of the second spectrum, stability[J].Journal of Sound and Vibration,2015,344:209-220.

PDF(2632 KB)

Accesses

Citation

Detail

段落导航
相关文章

/