基于OFMD和FSC的滚动轴承复合故障诊断

唐贵基1,2,张龙1,薛贵1,徐振丽1,王晓龙1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 160-168.

PDF(2745 KB)
PDF(2745 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 160-168.
论文

基于OFMD和FSC的滚动轴承复合故障诊断

  • 唐贵基1,2,张龙1,薛贵1,徐振丽1,王晓龙1,2
作者信息 +

Composite fault diagnosis of rolling bearing based on OFMD and FSC

  • TANG Guiji1,2, ZHANG Long1, XUE Gui1, XU Zhenli1, WANG Xiaolong1,2
Author information +
文章历史 +

摘要

针对滚动轴承的复合故障诊断问题,深入研究了一种基于优化特征模态分解和快速谱相关的复合故障诊断方法。首先,通过理论分析,提出脉冲能量因子指标来实现特征模态分解的参数选择以及最优分量的选取;然后,基于快速谱相关原理设计谱相关相对强度曲线和改进快速谱相关图,用于确定不同故障调制后对应的最优载波,对最优载波进行包络处理,从而分离轴承的复合故障特征,最终实现复合故障的准确性诊断。通过模拟故障实验和工程案例分析结果表明:本文所提方法相比于经验模态分解能够有效滤除噪声干扰,具有良好的鲁棒性,同时,避免了解卷积方法设定参数的缺陷,且与Autogram方法相比,能够有效分离复合故障特征,避免复合故障特征成分耦合。

Abstract

Aiming at the problem of compound fault diagnosis of rolling bearing, a compound fault diagnosis method based on optimized feature mode decomposition and fast spectral correlation is studied in detail. Firstly, through theoretical analysis, the index of pulse energy factor is proposed to realize the parameter selection of feature mode decomposition and the selection of the optimal component. Then, based on the principle of fast spectral correlation, the spectral correlation relative strength curve and the improved fast spectral correlation graph are designed to determine the optimal carrier corresponding to different fault modulation, and the envelope processing of the optimal carrier is carried out, so as to separate the composite fault characteristics of the bearing and finally realize the accurate diagnosis of the composite fault. The results of simulated fault experiments and engineering case analysis show that compared with empirical mode decomposition, the proposed method can effectively filter noise interference and has good robustness. At the same time, it can avoid the defects of understanding parameters set by convolution method, and can effectively separate composite fault features and avoid the coupling of composite fault feature components compared with Autogram method.

关键词

滚动轴承 / 复合故障 / 特征分离 / 特征模态分解 / 快速谱相关

Key words

rolling bearing / compound fault / feature separation / feature mode decomposition / fast spectral correlation

引用本文

导出引用
唐贵基1,2,张龙1,薛贵1,徐振丽1,王晓龙1,2. 基于OFMD和FSC的滚动轴承复合故障诊断[J]. 振动与冲击, 2024, 43(15): 160-168
TANG Guiji1,2, ZHANG Long1, XUE Gui1, XU Zhenli1, WANG Xiaolong1,2. Composite fault diagnosis of rolling bearing based on OFMD and FSC[J]. Journal of Vibration and Shock, 2024, 43(15): 160-168

参考文献

[1] 王晓冬,何正嘉,訾艳阳.多小波自适应构造方法及滚动轴承复合故障诊断研究[J].振动工程学报,2010,23(04):438-444. Wang Xiaodong, He Zhengjia, Zi Yanyang. Research on Multi-Wavelet Adaptive Construction Method and Compound Fault Diagnosis of Rolling Bearing[J]. Journal of Vibration Engineering,2010,23(04):438-444. [2] 蔡艳平,李艾华,石林锁等.基于EMD与谱峭度的滚动轴承故障检测改进包络谱分析[J].振动与冲击,2011,30(02):167-172+191. CAI Yanping, Li Aihua, Shi Lin Suo, etc. Improved Envelope Spectrum Analysis of Rolling Bearing Fault Detection Based on EMD and Spectral Kurtosis[J]. Journal of Vibration and Shock,2011,30(02):167-172+191. [3] Yi C, Wang H, Ran L, et al. Power spectral density-guided variational mode decomposition for the compound fault diagnosis of rolling bearings[J]. Measurement, 2022, 199: 111494. [4] 郑圆,胡建中,贾民平等.一种基于参数优化变分模态分解的滚动轴承故障特征提取方法[J].振动与冲击,2020,39(21):195-202 Zheng Yuan, Hu Jianzhong, Jia Min Yiping. Fault feature extraction method of rolling bearing based on parameter optimization variational mode decomposition[J]. Journal of Vibration and Shock, 2019,39(21):195-202. [5] 胡爱军,赵军,孙尚飞,黄申申.基于谱峭度和最大相关峭度解卷积的滚动轴承复合故障特征分离方法[J].振动与冲击,2019,38(04):158-165. Hu Aijun, ZHAO Jun, SUN Shangfei, HUANG Shenshen. Feature separation method for rolling bearing complex faults based on spectral kurtosis and maximum correlation Kurtosis deconvolution [J]. Journal of Vibration and Shock,2019,38(04):158-165. [6] 齐咏生,刘飞,李永亭等.基于MK-MOMEDA和Teager能量算子的风电机组滚动轴承复合故障诊断[J].太阳能学报,2021,42(07):297-307. Qi Yongsheng, Liu Fei, Li Yongting et al. Composite Fault diagnosis of rolling bearings for wind Turbines based on MK-MOMEDA and Teager energy operators[J]. Journal of Solar Energy, 2012, 21,42(07):297-307. [7] Gao S, Shi S, Zhang Y. Rolling bearing compound fault diagnosis based on parameter optimization MCKD and convolutional neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-8. [8] Antoni J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007, 21(1): 108-124. [9] 王慧滨,剡昌锋,孟佳东,陈光亿,吴黎晓.融合Autogram的共振解调和1.5维谱的滚动轴承复合故障诊断方法[J].振动工程学报,2022,35(06):1541-1551. Wang Huibin, Shanxi Changfeng, Meng Jiadong, Chen Guangyi, WU Lixiao. Composite Fault diagnosis Method of rolling Bearing based on Autogram resonance demodulation and 1.5 dimensional spectrum[J]. Journal of Vibration Engineering, 2019,35(06):1541-1551. [10] 黎敏,阳建宏,王晓景.基于信息熵的循环谱分析方法及其在滚动轴承故障诊断中的应用[J].振动工程学报,2015,28(01):164-174. Li Min, Yang Jianhong, Wang Xiaojing. Cyclic spectrum Analysis Method based on information entropy and its Application in rolling Bearing Fault diagnosis[J]. Journal of Vibration Engineering,2015,28(01):164-174. [11] Chen B, Zhang W, Gu J X, et al. Product envelope spectrum optimization-gram: An enhanced envelope analysis for rolling bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2023, 193: 110270. [12] Miao Y, Zhang B, Li C, et al. Feature mode decomposition: new decomposition theory for rotating machinery fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2022, 70(2): 1949-1960. [13] Yan X, Jia M. Bearing fault diagnosis via a parameter-optimized feature mode decomposition[J]. Measurement, 2022, 203: 112016. [14] Antoni J, Xin G, Hamzaoui N. Fast computation of the spectral correlation[J]. Mechanical Systems and Signal Processing,2017, 92: 248-277. [15] 崔玲丽,高立新,蔡力钢等.基于循环平稳解调的齿轮裂纹早期故障诊断研究[J].振动工程学报,2008(03):274-278. Cui Lingli, Gao Lixin, CAI Ligang et al. Research on early Fault Diagnosis of Gear Crack based on cyclostationary Demodulation[J]. Journal of Vibration Engineering,2008(03):274-278.

PDF(2745 KB)

Accesses

Citation

Detail

段落导航
相关文章

/