功能梯度多孔磁电弹板的等几何建模与自由振动分析

刘庆运,张红一,白凯凯,胡晓磊,刘涛

振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 169-178.

PDF(1504 KB)
PDF(1504 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 169-178.
论文

功能梯度多孔磁电弹板的等几何建模与自由振动分析

  • 刘庆运,张红一,白凯凯,胡晓磊,刘涛
作者信息 +

Iso-geometric modeling and free vibration analysis of FGP-MEE plates

  • LIU Qingyun, ZHANG Hongyi, BAI Kaikai, HU Xiaolei, LIU Tao
Author information +
文章历史 +

摘要

针对功能梯度多孔磁电弹(Functional graded porous magneto electro elastic, FGP-MEE)板结构,本文基于等几何分析法(Isogeometric analysis, IGA),采用一阶剪切变形理论(First-order shear deformation theory, FSDT)建立了等几何数值分析模型。首先,根据修正幂律(Modified power law, MPL)方法得到了具有四种不同孔隙分布形式(Vu,Vo,Vx,Vv)功能梯度多孔磁电弹结构的等效材料参数;然后,利用磁-电-弹耦合本构方程、哈密顿变分原理以及等几何分析方法推导了FGP-MEE板的控制方程,并通过与已有文献对比,验证了所建模型的有效性和准确性;最后,研究了孔隙系数、功能梯度指数、孔隙分布形式、结构的几何参数(宽厚比、长宽比)以及边界条件对FGP-MEE板自由振动的影响。研究结果表明:材料中孔隙分布形式、孔隙系数以及功能梯度指数的变化对FGP-MEE板的固有频率有较大影响,且在孔隙呈Vo型分布时板的固有频率最大。

Abstract

Based on Isogeometric analysis (IGA), an isogeometric numerical analysis model is established for functionally graded porous magneto electro elastic (FGP-MEE) plates by using the first-order shear deformation theory (FSDT). Firstly, according to the modified power law (MPL) method, the equivalent material properties of the FGP-MEE plate with four different porosity distribution types (Vu,Vo,Vx,Vv) are determined. Then, the governing equations of the FGP-MEE plate are derived by using the magneto-electro-elastic coupling constitutive equations, Hamilton variational principle and IGA methods, and the effectiveness and accuracy of the model are verified by comparing with the existing literatures. Finally, the effects of porosity coefficient, functional gradient index, porosity distribution types, geometrical parameters (width-to-thickness ratio, length-to-width ratio) and boundary conditions on the free vibration of the FGP-MEE plate are studied. The results show that the natural frequency of the plate is greatly affected by the porosity distribution types, porosity coefficient and functional gradient index, and the plate with porosity distribution Vo possesses the highest stiffness.

关键词

功能梯度多孔磁电弹板 / 等几何分析法 / 一阶剪切变形理论 / 自由振动

Key words

functionally graded porous magneto electro elastic plate / Isogeometric analysis / first-order shear deformation theory / free vibration

引用本文

导出引用
刘庆运,张红一,白凯凯,胡晓磊,刘涛. 功能梯度多孔磁电弹板的等几何建模与自由振动分析[J]. 振动与冲击, 2024, 43(15): 169-178
LIU Qingyun, ZHANG Hongyi, BAI Kaikai, HU Xiaolei, LIU Tao. Iso-geometric modeling and free vibration analysis of FGP-MEE plates[J]. Journal of Vibration and Shock, 2024, 43(15): 169-178

参考文献

[1] Chan H L, Li K, Choy C. Piezoelectric ceramic fibre/epoxy 1-3 composites for high-frequency ultrasonic transducer applications[J]. Materials Science and Engineering: B, 2003, 99(1-3): 29-35. [2] Rice R. Processing of ceramic composites[J]. Noyes Publications, Advanced Ceramic Processing and Technology, 1990, 1: 123-213. [3] Ramirez F, Heyliger P R, Pan E. Free vibration response of two-dimensional magneto-electro-elastic laminated plates[J]. Journal of Sound and Vibration, 2006, 292(3-5): 626-644. [4] Tsai Y H, Wu C P. Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions[J]. International journal of engineering science, 2008, 46(9): 843-857. [5] Waksmanski N, Pan E. An analytical three-dimensional solution for free vibration of a magneto-electro-elastic plate considering the nonlocal effect[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(11): 1501-1513. [6] Pan E. Exact solution for simply supported and multilayered magneto-electro-elastic plates[J]. Journal of Applied Mechanics,2001, 68(4): 608-618. [7] Pan E, Heyliger P R. Free vibrations of simply supported and multilayered magneto-electro-elastic plates[J]. Journal of Sound and Vibration, 2002, 252(3): 429-442. [8] Wang J, Chen L, Fang S. State vector approach to analysis of multilayered magneto-electro-elastic plates[J]. International Journal of Solids and Structures, 2003, 40(7): 1669-1680. [9] Kiran M C, Kattimani S C. Buckling characteristics and static studies of multilayered magneto-electro-elastic plate[J]. Materials Science and Engineering:. 2017, 64 (6), 751-763. [10] Xin L, Hu Z. Free vibration of layered magneto-electro-elastic beams by SS-DSC approach[J]. Composite Structures, 2015, 125: 96-103. [11] Peng X, Yan M, Shi W. A new approach for the preparation of functionally graded materials via slip casting in a gradient magnetic field[J]. Scripta materialia, 2007, 56(10): 907-909. [12] Zhang S Q, Zhao Y F, Wang X, et al. Static and dynamic analysis of functionally graded magneto-electro-elastic plates and shells[J]. Composite Structures, 2022, 281: 114950. [13] Praveen G N, Reddy J N. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates[J]. International journal of solids and structures, 1998, 35(33): 4457-4476. [14] Bhangale R K, Ganesan N. Free vibration of simply supported functionally graded and layered magneto-electro-elastic plates by finite element method[J]. Journal of sound and vibration, 2006, 294(4-5): 1016-1038. [15] Wu C P, Tsai Y H. Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux[J]. International Journal of Engineering Science, 2007, 45(9): 744-769. [16] Jiang W W, Gao X W, Liu H Y. Multi-physics zonal Galerkin free element method for static and dynamic responses of functionally graded magneto-electro-elastic structures[J]. Composite Structures, 2023: 117217. [17] Zhang P, Qi C, Fang H, et al. A semi-analytical approach for the flexural analysis of in-plane functionally graded magneto-electro-elastic plates[J]. Composite Structures, 2020, 250: 112590. [18] Liming Z, Shuhui R E N, Bin N I E, et al. Coupling Magneto-Electro-Elastic node-based smoothed radial point interpolation method for free vibration and transient analysis of Functionally Graded Magneto-Electro-Elastic structures[J]. Chinese Journal of Aeronautics, 2020, 33(1): 227-243. [19] Tang Y, Li C L, Yang T. Application of the generalized differential quadrature method to study vibration and dynamic stability of tri-directional functionally graded beam under magneto-electro-elastic fields[J]. Engineering Analysis with Boundary Elements, 2023, 146: 808-823. [20] Khor K A, Gu Y W. Effects of residual stress on the performance of plasma sprayed functionally graded ZrO2/NiCoCrAlY coatings[J]. Materials Science and Engineering: A, 2000, 277(1-2): 64-76. [21] Wang Y Q, Wan Y H, Zhang Y F. Vibrations of longitudinally traveling functionally graded material plates with porosities[J]. European Journal of Mechanics-A/Solids, 2017, 66: 55-68. [22] Ebrahimi F, Zia M. Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities[J]. Acta Astronautica, 2015, 116: 117-125. [23] Kumar Singh A, Kumar S, Kumari R. Impact of interfacial imperfection on transverse wave in a functionally graded piezoelectric material structure with corrugated boundaries[J]. The European Physical Journal Plus, 2018, 133: 1-15. [24] Parker T S, Chua L. Practical numerical algorithms for chaotic systems[M]. Springer Science & Business Media, 2012. [25] HS N K, Kattimani S, Nguyen-Thoi T. Influence of porosity distribution on nonlinear free vibration and transient responses of porous functionally graded skew plates[J]. Defence Technology, 2021, 17(6): 1918-1935. [26] Su J, He W, Zhou K. Study on vibration behavior of functionally graded porous material plates immersed in liquid with general boundary conditions[J]. Thin-Walled Structures, 2023, 182: 110166. [27] Ebrahimi F, Jafari A, Barati M R. Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations[J]. Thin-Walled Structures, 2017, 119: 33-46. [28] Barati M R, Shahverdi H. Aero-hygro-thermal stability analysis of higher-order refined supersonic FGM panels with even and uneven porosity distributions[J]. Journal of Fluids and Structures, 2017, 73: 125-136. [29] Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer methods in applied mechanics and engineering, 2005, 194(39-41): 4135-4195. [30] Hildebrand F B, Reissner E, Thomas G B. Notes on the foundations of the theory of small displacements of orthotropic shells[J]. journal of international political theory, 1949. [31] 刘涛, 李朝东, 汪超, 等. 基于三阶剪切变形理论的压电功能梯度板静力学等几何分析[J]. 振动与冲击, 2021, 40(01): 73-85. Liu Tao, Li Chaodong, Wang Chao, et al. Static iso-geometric analysis of piezoelectric functionally graded plate based on third-order shear deformation theory [J]. Journal of vibration and shock, 2021, 40(01): 73-85. [32] 高英山, 张顺琦, 黄钟童. CNT纤维增强功能梯度复合板非线性建模与仿真[J]. 机械工程学报, 2019, 55(8): 80-87. Gao Yingshan, Zhang Shunqi, Huang Zhongtong. Nonlinear modeling and simulation of carbon nanotube fiber reinforced composite plate[J]. Journal of mechanical engineering, 2019, 55(8): 80-87. (in Chinese) [33] Askari Farsangi M A, Saidi A R. Levy type solution for free vibration analysis of functionally graded rectangular plates with piezoelectric layers[J]. Smart Materials and Structures, 2012, 21(9): 94017. [34] Kiran M C, Kattimani S C. Assessment of porosity influence on vibration and static behaviour of functionally graded magneto-electro-elastic plate: A finite element study[J]. European Journal of Mechanics-A/Solids, 2018, 71: 258-277. [35] Milazzo A. Refined equivalent single layer formulations and finite elements for smart laminates free vibrations[J]. Composites Part B: Engineering, 2014, 61: 238-253.

PDF(1504 KB)

Accesses

Citation

Detail

段落导航
相关文章

/