负泊松比局域共振地震超材料减隔振特性研究

丁海滨1,2,3,黄年勇1,2,3,徐长节1,2,3,童立红1,2,3,李崇慧1,2,3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 179-188.

PDF(4672 KB)
PDF(4672 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 179-188.
论文

负泊松比局域共振地震超材料减隔振特性研究

  • 丁海滨1,2,3,黄年勇1,2,3,徐长节1,2,3,童立红1,2,3,李崇慧1,2,3
作者信息 +

Seismic reduction and isolation characteristics of negative Poisson ratio local resonance seismic metamaterial

  • DING Haibin1,2,3, HUANG Nianyong1,2,3, XU Changjie1,2,3, TONG Lihong1,2,3, LI Chonghui1,2,3
Author information +
文章历史 +

摘要

地震是严重危害人类的自然灾害之一,极具突发性和毁灭性,地震波频率大多位于0~20Hz,属于典型的低频波,而传统隔振结构对低频波的隔离效果差。近年来,随着局域共振型地震超材料隔振屏障的提出,为实现低频地震波的隔离提供了新思路,然而针对超低频地震波的隔离,仍存在挑战。为此,针对传统局域共振地震超材料未考虑其本身的吸能特性,结合负泊松比材料具有良好的能量吸收特性,创新性提出了负泊松比局域共振地震超材料隔振屏障,实现了超低频地震波的隔离。基于周期性理论,利用COMSOL Multiphysics探究其带隙形成机理及其减振的特性。结果表明:通过结合局域共振地震超材料及负泊松比材料,对共振器进行连续周期性排列,得到的新型地震超材料带隙为0.612Hz~13.35Hz,探明了其带隙形成机制,实现了利用小尺寸隔振屏障得到超低超宽隔振频带;负泊松比材料的泊松比值、密度及弹性模量对频率带隙具有一定影响,实际工程中应选择负泊松比值、密度及弹性模量均较小的负泊松比材料。针对不同主频范围的实际地震波隔振效果的研究发现,对主频大于0.612Hz以上的地震波具有显著的隔振效果。所提出的负泊松比局域共振地震超材料实现了利用小尺寸隔振屏障对超低频地震波的隔离,在地震波隔离的应用上具有广阔的前景。

Abstract

Earthquake is one of the most damaging natural hazards, extremely sudden and devastating. Seismic waves belong to the typical low-frequency wave with the range of 0~20 Hz. However, it is extremely challenging to isolate the low-frequency wave by the traditional isolation structure. Recently, a novel isolation idea has been formed to isolate the low-frequency seismic wave by proposing the local resonance seismic metamaterials, Nevertheless, there are still challenges in isolating ultra-low frequency seismic waves. Therefore, in response to the traditional local resonance seismic metamaterials not considering their own energy absorption characteristics, combined with the good energy absorption characteristics of negative Poisson's ratio materials, an innovative negative Poisson's ratio local resonance seismic metamaterial isolation barrier is proposed. This new seismic metamaterial is expected to isolate the ultra-low seismic waves. Based on the periodicity theory, COMSOL Multiphysics is used to explore the mechanism of band gap formation and its vibration reduction characteristics. The cell structure of the novel seismic is established, and the periodic boundary condition is applied. The eigenfrequency analysis is carried out to obtain the frequency bandgap of the new seismic metamaterial, and a desired ultra-low and ultra-wide frequency bandgap with the range of 0.612 Hz~13.35 Hz is obtained using a small size of the isolation barrier. and the Poisson's ratio, density, and elastic modulus of the negative Poisson's ratio material have a certain impact on the frequency bandgap. In practical engineering, negative Poisson's ratio materials with smaller negative Poisson's ratio, density, and elastic modulus should be selected. A study on the isolation effect of actual seismic waves with different main frequency ranges has found that it has a significant isolation effect on seismic waves with main frequencies greater than 0.612Hz.

关键词

超材料 / 局域共振 / 负泊松比 / 地震波 / 隔振

引用本文

导出引用
丁海滨1,2,3,黄年勇1,2,3,徐长节1,2,3,童立红1,2,3,李崇慧1,2,3. 负泊松比局域共振地震超材料减隔振特性研究[J]. 振动与冲击, 2024, 43(15): 179-188
DING Haibin1,2,3, HUANG Nianyong1,2,3, XU Changjie1,2,3, TONG Lihong1,2,3, LI Chonghui1,2,3. Seismic reduction and isolation characteristics of negative Poisson ratio local resonance seismic metamaterial[J]. Journal of Vibration and Shock, 2024, 43(15): 179-188

参考文献

[1] 袁晓铭, 孙锐. 我国规范液化分析方法的发展设想 [J]. 岩土力学, 2011, 32(S2): 351-8. YUAN Xiaoming,SUN Rui. Proposals of liquefaction analytical methods in Chinese seismic design provisions [J].Rock and Soil Mechanics, 2011, 32(S2): 351-8. [2] BRûLé S, ENOCH S, GUENNEAU S. Emergence of seismic metamaterials: Current state and future perspectives [J]. Physics Letters A, 2020, 384(1): 126034. [3] AMER Y A, EL-SAYED A T, AHMED E E. Vibration reduction of a non-linear ship model using positive position feedback controllers [J]. International Journal of Dynamics and Control, 2021, 10(2): 409-26. [4] DESAI R, GUHA A, SESHU P. Modelling and simulation of active and passive seat suspensions for vibration attenuation of vehicle occupants [J]. International Journal of Dynamics and Control, 2021, 9(4): 1423-43. [5] 周凤玺, 梁玉旺. 多空沟对弹性波的散射及隔振性能分析:平面P-SV波入射 [J]. 振动工程学报: 1-8. ZHOU Fengxi,LIANG Yuwang. Analysis of elastic wave scattering and vibration isolation performance of multiple open trenches:plane P-SV wave incident [J]. Journal Of Vibration Engineering, 2023, 36(03), 1-8. [6] 刘晶磊, 刘桓, 刘鹏泉, et al. 铁路振动作用下双排桩屏障隔振性能试验研究 [J]. 建筑结构学报, 2020, 41(11): 184-90. LIU Jinglei,LIU Huan,LIU Pengquan, et al. Experimental study on vibration isolation performance of double row pile barrier under railway vibration [J]. Journal of Building Structures, 2020, 41(11): 184-90. [7] 张猛, 马强. 地下动荷载作用下非饱和土地基中双层波阻板隔振性能研究 [EB/OL]. (2023-02-16)[2023-11-13].https://kns.cnki.net/kcms/detail//11.2595.O3.20230216.1325.022.html. [8] LI X-F, CHENG S-L, YANG H-Y, et al. Optimization of vibration characteristics and directional propagation of plane waves in branching ligament structures of wind models [J]. Results in Physics, 2023, 47. [9] LI X-F, CHENG S-L, YANG H-Y, et al. Bandgap tuning and in-plane wave propagation of chiral and anti-chiral hybrid metamaterials with assembled six oscillators [J]. Physica A: Statistical Mechanics and its Applications, 2023, 615. [10] LI X-F, CHENG S-L, YANG H-Y, et al. Integrated analysis of bandgap optimization regulation and wave propagation mechanism of hexagonal multi-ligament derived structures [J]. European Journal of Mechanics - A/Solids, 2023, 99. [11] DANAWE H, TOL S. Experimental realization of negative refraction and subwavelength imaging for flexural waves in phononic crystal plates [J]. Journal of Sound and Vibration, 2022, 518: 116552. [12] 郭振坤, 李凤明. 超材料结构的弹性波带隙主动调控研究进展 [J]. 科学通报, 2022, 67(12): 1249-63. Guo Zhenkun,Li Fengming. Advances in active tuning of elastic wave band gaps in metamaterial structures [J]. Chinese Science Bulletin, 2022, 67(12): 1249-63. [13] 张兆龙, 朱翔, 李天匀, et al. 含负泊松比超材料肋板的双层板声振特性分析 [J]. 振动与冲击, 2022, 41(15): 273-9. ZHANG Zhaolong ZHU Xiang LI Tianyun, et al. Acoustic and vibration characteristics analysis of double-layer plates with negative Poisson’s ratio metamaterial ribs [J]. Journal of Vibration and Shock, 2022, 41(15): 273-9. [14] WOOD J. The top ten advances in materials science [J]. Materials Today, 2008, 11(1): 40-5. [15] LIU Z, QIN K-Q, YU G-L. Partially Embedded Gradient Metabarrier: Broadband Shielding from Seismic Rayleigh Waves at Ultralow Frequencies [J]. Journal of Engineering Mechanics, 2020, 146(5): 04020032. [16] LIU Z, ZHANG X, MAO Y, et al. Locally Resonant Sonic Materials [J]. Science, 2000, 289(5485): 1734-6. [17] 陈振宇, 林志华, 施帆. 地震超材料:从自然结构到新型人工结构 [J]. 科学通报, 2022, 67(12): 1264-78. Chen Zhenyu,C.W.Lim,Shi Fan A review on seismic metamaterials: From natural to artificial structures [J]. Chinese Science Bulletin, 2022, 67(12): 1264-78. [18] KHELIF A, ACHAOUI Y, BENCHABANE S, et al. Locally resonant surface acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface [J]. Physical Review B Condensed Matter, 2010, 81(21): 214303. [19] DU Q, ZENG Y, XU Y, et al. H-fractal seismic metamaterial with broadband low-frequency bandgaps [J]. Journal of Physics D: Applied Physics, 2018, 51(10): 105104. [20] MUHAMMAD, LIM C W, REDDY J N. Built-up structural steel sections as seismic metamaterials for surface wave attenuation with low frequency wide bandgap in layered soil medium [J]. Engineering Structures, 2019, 188: 440-51. [21] COLOMBI A, COLQUITT D, ROUX P, et al. A seismic metamaterial: The resonant metawedge [J]. Scientific Reports, 2016, 6(1): 27717. [22] COLOMBI A, ROUX P, GUENNEAU S, et al. Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances [J]. Scientific reports, 2016, 6(1): 1-7. [23] MUHAMMAD, WU T, LIM C W. Forest Trees as Naturally Available Seismic Metamaterials: Low Frequency Rayleigh Wave with Extremely Wide Bandgaps [J]. International Journal of Structural Stability and Dynamics, 2020, 20(14): 2043014. [24] MUHAMMAD, LIM C W. Natural seismic metamaterials: the role of tree branches in the birth of Rayleigh wave bandgap for ground born vibration attenuation [J]. Trees, 2021, 35(4): 1299-315. [25] HE C, ZHOU S H, LI X X, et al. Forest trees as a natural metamaterial for surface wave attenuation in stratified soils [J]. Constr Build Mater, 2023, 363. [26] PALERMO A, VITALI M, MARZANI A. Metabarriers with multi-mass locally resonating units for broad band Rayleigh waves attenuation [J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 265-77. [27] MUHAMMAD, LIM C W. Phononic metastructures with ultrawide low frequency three-dimensional bandgaps as broadband low frequency filter [J]. Scientific Reports,2021, 11(1): 7137. [28] IMBALZANO G, TRAN P, NGO T D, et al. A numerical study of auxetic composite panels under blast loadings [J]. Composite Structures, 2016, 135: 339-52. [29] STREK T, MICHALSKI J, JOPEK H. Computational Analysis of the Mechanical Impedance of the Sandwich Beam with Auxetic Metal Foam Core [J]. Physica Status Solidi, 2019, 256(1): 1800423. [30] 秦浩星, 杨德庆. 声子晶体负泊松比蜂窝基座的减振机理研究 [J]. 振动工程学报, 2019, 32(03): 421-30. QIN Haoxing,YANG Deqing. Vibration reduction mechanism for phononic crystal cellular mount with auxetic effect [J]. Journal Of Vibration Engineering, 2019, 32(03): 421-30. [31] 秦浩星, 杨德庆, 张相闻. 负泊松比声学超材料基座的减振性能研究 [J]. 振动工程学报, 2017, 30(06): 1012-21. QIN Haoxing,YANG Deqing,ZHANG Xiangwen. Vibration reduction of auxetic acoustic metamaterial mount [J]. Journal Of Vibration Engineering, 2017, 30(06): 1012-21. [32] HUANG T T, REN X, ZENG Y, et al. Based on auxetic foam: A novel type of seismic metamaterial for Lamb waves [J].Engineering Structures, 2021, 246. [33] MUHAMMAD, LIM C W. From Photonic Crystals to Seismic Metamaterials: A Review via Phononic Crystals and Acoustic Metamaterials [J]. Archives of Computational Methods in Engineering, 2022, 29(2): 1137-98. [34] CHENG Z, SHI Z. Vibration attenuation properties of periodic rubber concrete panels [J]. Constr Build Mater, 2014, 50: 257-65. [35] PALERMO A, KRöDEL S, MARZANI A, et al. Engineered metabarrier as shield from seismic surface waves [J]. Scientific Reports, 2016, 6(1): 39356. [36] PU X, SHI Z. A novel method for identifying surface waves in periodic structures [J]. Soil Dynamics and Earthquake Engineering, 2017, 98: 67-71. [37] MUHAMMAD, LIM C W, LEUNG A Y T. Plane and Surface Acoustic Waves Manipulation by Three-Dimensional Composite Phononic Pillars with 3D Bandgap and Defect Analysis [J]. Acoustics, 2021, 3(1): 25-41. [38] AMANAT S, RAFIEE-DEHKHARGHANI R, BITARAF M, et al. Analytical and numerical investigation of finite and infinite periodic lattices for mitigation of seismic waves in layered grounds [J]. International Journal of Engineering Science, 2022, 173. [39] LUO Y M, HE C, TAO Z, et al. A surface-wave seismic metamaterial filled with auxetic foam [J]. International Journal of Mechanical Sciences, 2023. [40] ZENG Y, XU Y, DENG K, et al. A broadband seismic metamaterial plate with simple structure and easy realization [J]. Journal of Applied Physics, 2019, 125(22). [41] ZENG Y, XU Y, DENG K, et al. Low-frequency broadband seismic metamaterial using I-shaped pillars in a half-space [J]. Journal of Applied Physics, 2018, 123(21). [42] MUHAMMAD, LIM C W, KAMIL ŻUR K. Wide Rayleigh waves bandgap engineered metabarriers for ground born vibration attenuation [J]. Engineering Structures, 2021, 246. [43] WANG X, WAN S, NIAN Y Z, et al. Periodic in-filled pipes embedded in semi-infinite space as seismic metamaterials for filtering ultra-low-frequency surface waves [J].Construction and Building Materials, 2021, 313. [44] MUHAMMAD, LIM C W, ZUR K K. Wide Rayleigh waves bandgap engineered metabarriers for ground born vibration attenuation [J].Engineering Structures,, 2021, 246. [45] ZHANG Y, REN X, ZHANG X Y, et al. A novel buckling-restrained brace with auxetic perforated core: Experimental and numerical studies [J]. Engineering Structures, 2021, 249.

PDF(4672 KB)

Accesses

Citation

Detail

段落导航
相关文章

/