LYP225低屈服点钢哑铃形钢棒阻尼器剪切性能试验研究

连鸣1,2,周玉浩1,苏明周1,2,李伟1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 209-217.

PDF(3269 KB)
PDF(3269 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 209-217.
论文

LYP225低屈服点钢哑铃形钢棒阻尼器剪切性能试验研究

  • 连鸣1,2,周玉浩1,苏明周1,2,李伟1
作者信息 +

Test study on shear performance of LYP225 low yield point steel dumbbell shaped steel rod damper

  • LIAN Ming1,2, ZHOU Yuhao1, SU Mingzhou1,2, LI Wei1
Author information +
文章历史 +

摘要

本文结合带平直段的双圆锥阻尼器和低屈服点钢材的特性,设计了LYP225低屈服点钢哑铃形钢棒阻尼器(LY225-WDP),该阻尼器具有屈服位移小、延性高、耗能能力稳定的特点。利用低屈服点钢LYP225设计了7个不同构造参数的LY225-WDP试件,并对其进行低周往复循环荷载试验,研究阻尼器在循环剪切变形下的滞回与耗能能力,以及不同设计参数对阻尼器力学性能的影响。结果表明,在循环剪切变形下,LY225-WDP的变形特点主要表现为弯曲变形,破坏模式属于低周疲劳破坏;阻尼器的滞回曲线饱满,稳定性良好,在整个加载过程中,表现出明显的强化现象,延性系数在8.5~10.04,超强系数在2.09~2.79;阻尼器的弹性刚度及承载力在耗能段内径及长度一定时与内缩率呈正相关,在耗能段外径及长度一定时与内缩率呈负相关;阻尼器的耗能能力随着平直段长度的增加而明显提升;对LY225-WDP建立了弹性刚度及屈服承载力计算公式,试验数据验证了公式的准确性,可为LY225-WDP的设计提供参考。

Abstract

This paper combines the characteristics of the double cone damper and low yield point steel to propose the LY225-WDP (LYP225 low yield point steel web dumbbell pin damper). This damper exhibits features such as minimal yield displacement, high ductility, and stable energy dissipation capacity. Utilizing the low yield point steel LYP225, seven LY225-WDP specimens with varying structural parameters were designed. These specimens underwent low-cycle reciprocating cyclic loading tests to investigate the damper's hysteresis behavior under cyclic shear deformation, as well as the impact of different design parameters on the damper's mechanical performance. The results indicate that under cyclic shear deformation, LY225-WDP primarily exhibits bending deformation, leading to a failure mode associated with low-cycle fatigue. The damper's hysteresis curve is robust and stable, with a noticeable strengthening phenomenon throughout the loading process. Notably, the ductility coefficient ranges from 8.5 to 10.04, and the overstrength coefficient varies between 2.09 and 2.79. The damper's elastic stiffness and load-bearing capacity demonstrate positive correlations with the internal shrinkage rate when the energy dissipation section's inner diameter and length remain constant. Conversely, for a constant outer diameter and length of the energy dissipation section, these parameters display a negative correlation with the internal shrinkage rate. Moreover, the damper's energy dissipation capacity notably improves with an increase in the length of the straight section. The calculation formulas of elastic stiffness and yield bearing capacity of LY225-WDP are established. The accuracy of the formulas is verified by the experimental data, which can provide reference for the design of LY225-WDP.

关键词

低屈服点钢 / 钢棒耗能元件 / 循环荷载 / 试验研究 / 滞回性能

Key words

low yield point steel / steel bar energy dissipation element / cyclic loads / experimental investigation / hysteresis performance

引用本文

导出引用
连鸣1,2,周玉浩1,苏明周1,2,李伟1. LYP225低屈服点钢哑铃形钢棒阻尼器剪切性能试验研究[J]. 振动与冲击, 2024, 43(15): 209-217
LIAN Ming1,2, ZHOU Yuhao1, SU Mingzhou1,2, LI Wei1. Test study on shear performance of LYP225 low yield point steel dumbbell shaped steel rod damper[J]. Journal of Vibration and Shock, 2024, 43(15): 209-217

参考文献

[1] 周云. 金属耗能减震结构设计[M]. 武汉: 武汉理工大学出版社, 2006. ZHOU Yun. Jinshu haoneng jianzhen jiegou sheji[M]. Wu Han: Wuhan University of Technology Press, 2006. [2] 马宁, 苏利刚. 剪切型防屈曲钢板阻尼器的滞回性能试验研究[J]. 建筑结构学报, 2018, 39(11): 148-157. MA Ning, SU Ligang. Experimental study on hysteretic behavior of shear type buckling restrained shear panel dampers[J]. Journal of Building Structures, 2018, 39(11): 148-157. [3] 吴山, 何浩祥, 兰炳稷, 等. 多阶段屈服及失效型金属套管阻尼器性能试验及分析[J]. 土木工程学报, 2022, 55(12): 36-46. Wu Shan, He Haoxiang, Lan Bingji, et al. Experimental study and analysis on performance of metal tube damper with multi-stage yield and failure [J]. China Civil Engineering Journal, 2022, 55(12): 36-46. [4] 李冀龙, 欧进萍. X形和三角形SMA板式阻尼器的阻尼力模型[J]. 地震工程与工程振动, 2002(06): 109-114. LI Jilong, OU Jinping. Damping force hysteresis loop model for X type and triangle SMA plate dampers[J]. Earthouake Engineering and Engineering Eibration, 2002(06): 109-114. [5] 徐艳红, 李爱群, 黄镇. 抛物线外形软钢阻尼器试验研究[J]. 建筑结构学报, 2011, 32(12): 202-209. XU Yanhong, LI Aiqun, HUANG Zhen. Experimental study of mild steel dampers with parabolic shape[J]. Journal of Building Structures, 2011, 32(12): 202-209. [6] Chan R W K, Albermani F. Experimental study of steel slit damper for passive energy dissipation[J]. Engineering Structures, 2008, 30(4): 1058-1066. [7] Xiang M, Borchers E, Pena A, et al. Design and Behavior of Steel Shear Plates with Openings as Energy Dissipating Fuses[R]. California: Blume Earthquake Engineering Center at Stanford University, 2010 [8] Yao Z, Wang W, Zhu Y. Experimental evaluation and numerical simulation of low-yield-point steel shear panel dampers[J]. Engineering Structures, 2021, 245: 112860. [9] Tyler R G. Preliminary tests on an energy absorbing element for braced structures under earthquake loading[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 1983, 16(3): 201-212. [10] Kobori T, Miura Y, Fukusawa E, et al. Development and application of hysteresis steel dampers[C]//Proceedings of the 10th World conference on earthquake engineering. 1992, 2341: 2346. [11] 周云, 黄慧敏, 朱勇. 组合式双圆锥耗能器的设计与性能模拟分析[J]. 振动与冲击, 2012, 31(01): 131-139. ZHOU Yun, HUANG Huimin, ZHU Yong. Design and FE analysis for an assembled biconical energy dissipator(BED)[J]. Journal of Vibration and Shock, 2012, 31(01): 131-139. [12] Baiguera M, Vasdravellis G, Karavasilis T L. Dual seismic-resistant steel frame with high post-yield stiffness energy-dissipative braces for residual drift reduction[J]. Journal of Constructional Steel Research, 2016, 122: 198-212. [13] Vasdravellis G, Karavasilis T L, Uy B. Design rules, experimental evaluation, and fracture models for high-strength and stainless-steel hourglass shape energy dissipation devices[J]. Journal of Structural Engineering, 2014, 140(11): 04014087. [14] 何欣. 多方向位移放大式低屈服钢阻尼器力学性能研究[D]. 广州大学, 2021. HE Xin. Study on mechanical properties of multi-directional displacement amplification low yield steel damper[D]. Guangzhou University, 2021. [15] 孙威, 付腾燕, 居理宏, 等. 阵列型金属阻尼器钢棒耗能元件设计与性能研究[J]. 建筑科学与工程学报, 2018, 35(05): 225-232. SUN Wei, FU Tengyan, JU Lihong, et al. Steel rod energy dissipating element design and performance research of array type metal damper[J]. Journal of Architecture and Civil Engineering, 2018, 35(05): 225-232. [16] 宋中霜,李冀龙,韩露等.低屈服点钢剪切板阻尼器滞回性能试验研究[J].防灾减灾工程学报,2014, 34(03):289-295. SONG Zhongshuang, LI Jilong, Han Lu, et al. Experimental study on hysteretic behavior of shear panel dampers made of steel with low yield point[J]. Journal of Disaster Prevention and Mitigation, 2014, 34(03): 289-295. [17] 谢彩霞, 李海锋, 南子森, 等. 低屈服点钢LYP100单调与循环拉伸试验研究[J]. 建筑材料学报, 2020, 23(03): 713-720. XIE Caixia, LI Haifengl, NAN Zisen, et al. Experimental study of low yield point steel LYP100 under monotonic and cyclic tensile loading [J]. Journal of Building Materials, 2020, 23(03): 713-720. [18] 施刚, 高阳, 王珣等. 低屈服点钢低周疲劳性能研究[J]. 土木工程学报, 2019, 52(01) :20-26+52. Shi Gang, Gao Yang, Wang Xun, et al. Low cycle fatigue properties of low yield point steels [J]. China Civil Engineering Journal, 2019, 52(01) :20-26+52. [19] 石文龙, 陶正华, 张福寿. 低屈服点钢研究进展与力学性能数据分析[J]. 地震工程与工程振动, 2021, 41(01): 175-183. SHI Wenlong, TAO Zhenghua, ZHANG Fusho. Research progress and mechanical properties data analysis of low yield point steel[J]. Earthquake Engineering and Engineering Dynamics, 2021, 41(01): 175-183. [20] 许立言, 聂鑫, 樊健生等. 低屈服点钢剪切型阻尼器试验研究[J]. 清华大学学报(自然科学版), 2016, 56(09): 991-996. XU Liyan, NIE Xin, FAN Jiansheng, et al. Experimental investigation of low-yield-point steel shear panel dampers[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(09): 991-996. [21] Ghamari A, Thongchom C, Putra Jaya R, et al. Utilizing Low Yield Point Steel to Improve the Behavior of the I-Shaped Shear Links as Dampers[J]. Buildings, 2023, 13(2): 554. [22] Zhang C, Aoki T, Zhang Q, et al. The performance of low-yield-strength steel shear-panel damper with without buckling[J]. Materials and Structures, 2015, 48: 1233-1242. [23] 王宇航, 吴强, 熊光亮. 不同参数下低屈服点钢剪切板耗能元件受力性能试验研究[J]. 工程力学, 2017, 34(07): 21-29. WANG Yuhang, WU Qiang, XIONG Guangliang. Test study on mechanical properties of shear panel energy-dissipation components using low yield point steel with different parameters[J]. Engineering Mechanics, 2017, 34(07): 21-29. [24] 建筑消能减震技术规程: JGJ 297—2013[S]. 北京:中国建筑工业出版社, 2013. Technical specification for seismic energy dissipation of buildings: JGJ 297—2013[S]. Beijing: China Architecture & Building Press,2013. [25] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点”定义与讨论[J] .工程力学, 2017, 34(03): 36-46. FENG Peng, QIANG Hanlin, YE Lieping. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics, 2017, 34(03): 36-46. [26] 蒋友宝, 罗文辉, 丁贤钟, 等. 开孔钢板耗能阻尼器受力性能试验研究[J]. 建筑结构学报, 2022, 43(S1): 265-274. JIANG Youbao, LUO Wenhui, DING Xianzhong, et al. Experimental study on mechanical properties of energy dissipation damper with perforated steel plate[J]. Journal of Building Structures, 2022, 43(S1): 265-274. [27] 建筑抗震试验方法规程: JGJ/T 101—2015[S]. 北京:中国建筑工业出版社,2015. Specification for seismic test of buildings: JGJ/T 101—2015[S]. Beijing: China Architecture & Building Press,2015.

PDF(3269 KB)

184

Accesses

0

Citation

Detail

段落导航
相关文章

/