复杂度追踪(Complexity Pursuit,CP)是求解振动信号盲源分离(Blind source separation,BSS)问题的一类经典方法。用复杂度追踪估计解混矩阵主要有基于源信号复杂度计算的梯度下降(Complexity Pursuit-Gradient Descent,CP-GD)算法和基于时间可预测度的广义特征值分解(Temporal Predictability-Generalized Eigenvalue Decomposition,TP-GED)算法。当前,这两种算法的关联性与算法性能尚缺乏研究,因此对这两种算法的等价性和计算性能进行了研究。首先,给出CP-GD和TP-GED两种算法的具体理论及算法流程;其次,利用二、三自由度振动系统直观地展示并对比解混向量对应的源信号复杂度及可预测度的变化规律;最后,通过对多工况下多自由度系统的模态参数识别算例,对比研究两种算法的精度及计算量。研究结果表明,在低阻尼比及高信噪比条件下,两种方法得到的解混矩阵是相同的;考虑到计算信号复杂度和梯度下降较为耗时,CP-GD算法计算代价要高于TP-GED算法。
Abstract
Complexity Pursuit (CP) is a classical method for blind source separation of vibration signals. Two main approaches for estimating the de-mixing matrix using Complexity Pursuit are Complexity Pursuit-Gradient Descent (CP-GD), based on the complexity calculation of source signals, and Temporal Predictability-Generalized Eigenvalue Decomposition (TP-GED), based on the temporal predictability. The equivalence and computational performance of these two algorithms were studied based on vibration simulation. Firstly, the specific theories and algorithm procedures of CP-GD and TP-GED algorithms were presented. Secondly, the variations of source signal complexity and predictability corresponding to the de-mixed vectors were intuitively demonstrated and compared using two- and three-degree-of-freedom vibration systems. Finally, the accuracy and computation cost of the two algorithms were compared through modal parameter identification examples with multiple operating conditions and multiple degrees of freedom. The research results show that under low damping ratio and high signal-to-noise ratio conditions, the de-mixing matrices obtained with both methods are the same. Considering the computational cost of calculating signal complexity and performing gradient descent, the CP-GD algorithm has a higher computational cost than the TP-GED algorithm.
关键词
盲源分离(BSS) /
模态参数识别 /
柯尔莫哥洛夫复杂度 /
时间可预测度 /
梯度下降 /
广义特征值分解
{{custom_keyword}} /
Key words
blind source separation(BSS) /
modal parameter identification /
kolmogoroff complexity /
temporal predictability /
gradient descent /
generalized eigenvalue decomposition
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 黄民水,雷勇志.基于模态参数的结构损伤识别应用综述[J].武汉工程大学学报,2021,43(04):417-427.
HUANG Minshui, LEI Yongzhi. Review of structural damage identification methods based on modal parameters [J]. Journal of Wuhan Institute of Technology, 2021, 43(03): 417-427.
[2] Ahmed B, Dinu F, Marginean I. Structural Health Monitoring of Steel Frame Structure by Experimental Modal Parameter Identification[J]. Advanced Engineering Forum, 2020, 6085: 1-13.
[3] 王慧,王乐,田润泽.基于时域响应相关性分析及数据融合的结构损伤检测研究[J].工程力学,2020,37(09):30-37+111.
WANG Hui, WANG Le, TIAN Runze. Structural damage detection using correlation functions of time domain vibration responses and data fusion [J]. Engineering Mechanics. 2020, 37(09): 30-37+111.
[4] Santamaria I. Handbook of Blind Source Separation: Independent Component Analysis and Applications [J]. IEEE Signal Processing Magazine, 2013, 30(2): 133-134.
[5] Pati R, Pujari A K, Gahan P, et al. Independent component analysis: A review with emphasis on commonly used algorithms and contrast function [J]. Computación y Sistemas, 2021, 25(1): 97-115.
[6] Kerschen G, Poncelet F, Golinval J C. Physical interpretation of independent component analysis in structural dynamics [J]. Mechanical Systems and Signal Processing, 2006, 21(4): 1561-1575.
[7] 静行,袁海庆,赵毅. 基于独立分量分析的结构模态参数识别[J].振动与冲击,2010,29(03):137-141.
JING Xing, YUAN Haiqing, ZHAO Yi. Structural modal parameter identification based on independent component analysis [J]. Journal of Vibration and Shock, 2010, 29(03): 137-141.
[8] Poncelet F, Kerschen G, Golinval J C, et al. Output-only modal analysis using blind source separation techniques [J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2335-2358.
[9] Belouchrani A, Abed-Meraim K, Jean-Francois Cardoso, et al. Second order blind separation of temporally correlated sources [J]. Proceeding of the International Conference on Digital Signal Processing, 1993: 346-351.
[10] McNeill S I, Zimmerman D C. A framework for blind modal identification using joint approximate diagonalization [J]. Mechanical Systems and Signal Processing, 2008, 22(7): 1526-1548.
[11] 张晓丹,姚谦峰.基于盲源分离的结构模态参数识别[J].振动与冲击,2010,29(03):150-153.
ZHANG Xiaodan, YAO Qianfeng. Method of modal parameters identification based on blind sources separation[J]. Journal of Vibration and Shock, 2010, 29(03): 150-153.
[12] 曹军宏,韦灼彬,刘树勇.改进型盲源分离在结构模态识别中的应用[J].振动.测试与诊断,2013,33(04):689-693+729.
CAO Junhong, WEI Zhuobin, LIU Shuyong. Application of improved blind source separation in modal parameter identification [J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(04): 689-693+729.
[13] Chelidze D, ZHOU W L. Smooth orthogonal decomposition-based vibration mode identification [J]. Journal of Sound and Vibration, 2005, 292(3): 461-473.
[14] Hu Z X, Li J, ZHI L H, et al. Modal Identification of damped vibrating systems by iterative smooth orthogonal decomposition method [J]. Advances in Structural Engineering, 2021: 755-770.
[15] Hyvärinen A. Complexity pursuit: separating interesting components from time series [J]. Neural computation, 2001, 13(4): 883-898.
[16] Stone J V. Learning perceptually salient visual parameters using spatiotemporal smoothness constraints [J]. Neural computation, 1996, 8(7): 1463–1492.
[17] Stone J V. Blind source separation using temporal predictability [J]. Neural computation, 2001, 13(7): 1559-1574.
[18] Xie S, He Z, Fu Y. A Note on Stone’s Conjecture of Blind Signal Separation [J]. Neural Computation, 2005, 17(2): 321-330.
[19] Yang Y C, Nagarajaiah S. Blind modal identification of output-only structures in time-domain based on complexity pursuit [J]. Earthquake Engineering & Structural Dynamics, 2013, 42(13): 1885–1905.
[20] 常军,刘昊,尤传雨,等.基于改进复杂追踪算法的结构模态参数识别[J].噪声与振动控制,2019,39(01):177-185.
CHANG Jun, LIU Hao, YOU Chuanyu. Structural modal parameter identification based on improved complex pursuit algorithm [J]. Noise and Vibration Control, 2019, 39(01): 177-185.
[21] 傅祖芸. 信息论:基础理论与应用[M]. 北京:电子工业出版社,2015.
[22] Cover T M, Thomas J A. Elements of information theory [M]. New York: John Wiley & Sons, 1999.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}