基于Lamb波的CFRP层合板损伤类型检测和成像研究

宋春生1,2,李贤胜1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 63-70.

PDF(2653 KB)
PDF(2653 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 63-70.
论文

基于Lamb波的CFRP层合板损伤类型检测和成像研究

  • 宋春生1,2,李贤胜1,2
作者信息 +

CFRP laminates’ damage type detection and imaging study based on Lamb wave

  • SONG Chunsheng1,2, LI Xiansheng1,2
Author information +
文章历史 +

摘要

文章采用数值分析方法对Lamb波两种不同的波模态传播特性进行分析,并利用其振动特性对CFRP(carbon fibre reinforced plastics)层合板中不同类型的损伤进行成像及识别。通过采用延时累加(Delay and sum, DAS)算法与缺陷概率检测重构(Reconstruction algorithm for probabilistic inspection of defects, RAPID)算法相结合的成像算法对损伤进行成像研究。最后通过实验进行验证。研究表明:S0模态对于复合材料中的裂纹损伤更为敏感,而A0模态更适用于检测分层损伤。在实现Lamb波不同模态的单独激励后进行损伤检测成像,可根据损伤检测敏感性不同的特性对层合板中同时存在的损伤进行类型识别。成像结果表明所提出的方法能有效的检测出复合材料中存在的损伤并判断损伤类型。

Abstract

The article uses numerical analysis to analyze the propagation characteristics of two different wave modes of Lamb waves and to image and identify different types of damage in CFRP laminates using their vibration characteristics. The damage is studied by imaging algorithm using Delay and sum (DAS) algorithm combined with Reconstruction algorithm for probabilistic inspection of defects (RAPID) algorithm. Finally, it is validated by experiments. It is shown that the S0 mode is more sensitive to crack damage in composites, while the A0 mode is more suitable for detecting delamination damage. Damage detection imaging after realizing the separate excitation of different modes of Lamb waves can be used to identify the type of simultaneous damages in the plywood based on the characteristics of different sensitivities of damage detection. The imaging results show that the proposed method can effectively detect the damage in composites and determine the type of damage.

关键词

复合材料 / Lamb波 / 损伤类型识别 / 成像检测

Key words

composite materials / lamb wave / damage type detection / imaging inspection

引用本文

导出引用
宋春生1,2,李贤胜1,2. 基于Lamb波的CFRP层合板损伤类型检测和成像研究[J]. 振动与冲击, 2024, 43(15): 63-70
SONG Chunsheng1,2, LI Xiansheng1,2. CFRP laminates’ damage type detection and imaging study based on Lamb wave[J]. Journal of Vibration and Shock, 2024, 43(15): 63-70

参考文献

[1]. Soleimanpour R, Ng C T. Scattering analysis of nonlinear Lamb waves at delaminations in composite laminates[J]. Journal of Vibration and Control, 2022, 28(11-12): 1311-1323. [2]. Rahul V, Alokita S, Jayakrishna K, et al. Structural health monitoring of aerospace composites[M]. , 2019. [3]. 彭博, 税国双, 汪越胜. 蜂窝夹层板结构中导波的传播特性及其脱粘损伤的检测[J]. 振动与冲击, 2019, 38(12): 140-147. PENG Bo,SHUI Guoshuag,WANG Yuesheng.Properties of guided waves propagating in honeycomb sandwich plates and the detection of disbonding damage using ultrasonic waves[J].Journal of Vibration and Shock, 2019, 38(12): 140-147. [4]. 高飞, 姬鼎丞, 王军伟, 等. 航天器蜂窝夹层结构脱粘损伤的导波检测与成像方法[J]. 航天器工程, 2021,30(1):57-63. GAO Fei,JI Dingcheng,WANG Junwei,et al.Disbond detection and imaging using lamb waves for spacecraft honeycomb sandwich panel[J].Spacecraft Engineering, 2021,30(1):57-63. [5]. Ciampa F, Meo M. A new algorithm for acoustic emission localization and flexural group velocity determination in anisotropic structures[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(12): 1777-1786. [6]. Faisal Haider M, Migot A, Bhuiyan M Y, et al. Experimental investigation of impact localization in composite plate using newly developed imaging method[J]. Inventions, 2018, 3(3): 59. [7]. Mitra M, Gopalakrishnan S. Guided wave based structural health monitoring: A review[J]. Smart Materials and Structures, 2016, 25(5): 053001. [8]. 刘小峰, 杨康俊, 柏林. 基于Lamb波递归量化分析的复合材料裂纹损伤定征研究[J]. 振动与冲击, 2019, 38(10): 250-255. LIU Xiaofeng,YANG Kangjun,BO Lin.Crack damage investigation of composite materials based on the Lamb wave and recursive quantitative analysis[J].Journal of Vibration and Shock,2019, 38(10): 250-255. [9]. Wierach P. Lamb-wave based structural health monitoring in polymer composites[M]. Springer, 2017. [10]. 赵晶晶. 航天器典型结构中导波传播机理及损伤定位识别研究[D]. 上海交通大学, 2018. [11]. Gunawan L, Farrasamulya M H, Kuswoyo A, et al. Development of Laboratory-scale Lamb Wave-based Health Monitoring System for Laminated Composites[J]. Journal of Engineering & Technological Sciences, 2021, 53(4), 210407. [12]. Hameed M S, Li Z, Zheng K. Damage detection method based on continuous wavelet transformation of lamb wave signals[J]. Applied Sciences, 2020, 10(23): 8610. [13]. 蔡建, 石立华, 袁慎芳. 基于虚拟时间反转的高分辨率复合材料板结构损伤成像[J]. 复合材料学报, 2012, 29(1): 183-189. CAI Jian,SHI Lihua,YUAN Shenfang.High-resolution damage imaging for composite plate structures based on virtual time reversal[J].Acta Materiae Compositae Sinica, 2012, 29(1): 183-189. [14]. Mori N, Biwa S, Kusaka T. Damage localization method for plates based on the time reversal of the mode-converted Lamb waves[J]. Ultrasonics, 2019, 91: 19-29. [15]. 张凡, 徐旭, 李义丰. 基于MUSIC及波束成形算法的非线性Lamb波微裂纹成像与评估[J]. 振动与冲击, 2022, 41(22): 91-98. [16]. 褚兆飞. 基于超声Lamb波的频域最小功率无畸变自适应波束形成算法研究[D]. 江苏大学, 2019. [17]. Dai W, Wang X, Zhang M, et al. Corrosion monitoring method of porous aluminum alloy plate hole edges based on piezoelectric sensors[J]. Sensors, 2019, 19(5): 1106. [18]. Zhao X, Rose J L. Ultrasonic guided wave tomography for ice detection[J]. Ultrasonics, 2016, 67: 212-219. [19]. Ramadas C, Janardhan Padiyar M, Balasubramaniam K, et al. Delamination size detection using time of flight of anti-symmetric (Ao) and mode converted Ao mode of guided Lamb waves[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(8): 817-825. [20]. 王晓煜, 刘海龙, 高斯佳, 等. 基于超磁致伸缩换能器的CFRP板孔裂纹缺陷检测[J]. 振动与冲击, 2020, 39(23): 202-210. WANG Xiaoyu,LIU Hailong,GAO Sijia,et al.Hole crack damage detection of CFRP plate based on super-magneto-strictive transducer[J]. Journal of Vibration and Shock,2020, 39(23): 202-210. [21]. 孔琼英, 叶波, 邓为权, 等. 基于ToF损伤因子的碳纤维复合材料疲劳损伤概率成像方法[J].激光与光电子学进展,2021,58(16):163-171. KONG Qiongye,YE Bo,DENG Weiquan,et al.Probability-based diagnostic imaging method of fatigue damage for carbon fiber reinforced plastic based on tof damage factor[J]. Laser & Optoelectronics Progress, 2021, 58(16): 163-171. [22]. Faisal Haider M, Migot A, Bhuiyan M Y, et al. Experimental investigation of impact localization in composite plate using newly developed imaging method[J]. Inventions, 2018, 3(3): 59. [23]. Shan S, Qiu J, Zhang C, et al. Multi-damage localization on large complex structures through an extended delay-and-sum based method[J]. Structural Health Monitoring, 2016, 15(1): 50-64. [24]. Mei H, James R, Giurgiutiu V. Pure SH0 wave tomography for delamination detection in aerospace composites[C]//Health Monitoring of Structural and Biological Systems XV. SPIE, 2021, 11593: 138-148. [25]. Sharif-Khodaei Z, Aliabadi M H. Assessment of delay-and-sum algorithms for damage detection in aluminium and composite plates[J]. Smart materials and structures, 2014, 23(7): 075007. [26]. Su Z, Ye L. Identification of damage using Lamb waves: from fundamentals to applications[M]. Springer Science & Business Media, 2009.

PDF(2653 KB)

Accesses

Citation

Detail

段落导航
相关文章

/