舰船复合材料轴振动能量传递特性研究

辛大款1,景伟2,陈武超2,魏涛2,朱军超1, 3,华宏星3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 71-76.

PDF(2299 KB)
PDF(2299 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 71-76.
论文

舰船复合材料轴振动能量传递特性研究

  • 辛大款1,景伟2,陈武超2,魏涛2,朱军超1, 3,华宏星3
作者信息 +

Vibration energy transfer characteristics of warship composite shaft

  • XIN Dakuan1, JING Wei2, CHEN Wuchao2, WEI Tao2,ZHU Junchao1, 3, HUA Hongxing3
Author information +
文章历史 +

摘要

针对舰船复合材料传动轴减振机理尚不清晰的问题,文中构建了某舰船复合材料轴仿真模型,基于功率流法分析了复合材料轴振动能量传递特性,并在此基础上进一步探究了钢法兰-复合材料刚柔耦合界面匹配参数和轴段内复合材料铺层方式对振动能量传递的影响规律。最后通过复合材料传动轴模态试验和振动传递试验验证了仿真模型的准确性。结论如下:刚柔耦合界面对于振动能量抑制有着显著作用,其振动能量的传递随接触面积的增大而降低,而弹性模量比仅影响传动轴固有频率;随着铺层角度的减小及铺层数量的增加,复合材料轴段隔振性能逐渐增加。

Abstract

Aiming at the problem that the vibration damping mechanism of ship composite drive shafts was still unclear, a simulation model was established based on the equal-size composite shaft of a ship. Based on the power flow method, the composite shaft vibration energy transfer characteristics were analyzed. On this basis, the influence of the matching parameters of steel flange-composite rigid-flexible coupling interface and the vibration energy transfer of composite layup in the shaft section were further investigated. And the accuracy of the simulation model was verified by modal experiments and vibration transfer tests of composite drive shaft. The conclusions are as follows: the rigid-flexible coupling interface has a significant effect on the vibration energy suppression, and its vibration energy transfer decreases with the increase of the contact area, however the modulus of elasticity ratio only affects the drive shaft natural frequency; the vibration isolation performance of the composite shaft section increases gradually with the decrease of the pavement angle and the increase of the number of pavements.

关键词

复合材料轴 / 功率流 / 刚柔耦合 / 振动能量传递 / 铺层参数

Key words

composite shaft / power flow / rigid-flexible coupling / vibration energy transfer / laying parameter

引用本文

导出引用
辛大款1,景伟2,陈武超2,魏涛2,朱军超1, 3,华宏星3. 舰船复合材料轴振动能量传递特性研究[J]. 振动与冲击, 2024, 43(15): 71-76
XIN Dakuan1, JING Wei2, CHEN Wuchao2, WEI Tao2,ZHU Junchao1, 3, HUA Hongxing3. Vibration energy transfer characteristics of warship composite shaft[J]. Journal of Vibration and Shock, 2024, 43(15): 71-76

参考文献

[1] 许得水. 轴系结构振动特性建模与功率流分析研究[D]. 哈尔滨工程大学, 2021. XU Deishui. Study of vibration characteristics modeling of shafting structure and its power flow analysis [D]. Harbin Engineering University, 2021. [2] 任勇生, 赵仰生, 安瑞君等. 具有形状记忆合金丝的复合材料轴转子系统的振动与稳定性[J]. 振动与冲击, 2015, 34(03): 136-143. REN Yongsheng, ZHAO Yangsheng, AN Ruijun, et al. Vibration and stability of a composite shaft-rotor system with SMA wires [J]. Journal of Vibration and Shock, 2015, 34(03): 136-143. [3] 孙庆伟, 陆山.航空发动机复合材料主轴优化方案设计方法[J]. 复合材料学报, 2013, 30(06): 258-263. SUN Qingwei, LU Shan. Design and optimization method for composite main shaft of aircraft engine [J]. Acta Materiae Compositae Sinica. 2013, 30(06): 258-263. [4] 唐宇航, 梅志远, 陈志坚. 船用钢/复合材料组合系统的内损耗组成分析[J]. 振动.测试与诊断, 2019, 39(01): 15-24+218. TANG Yuhang, MEI Zhiyuan, CHEN Zhijian. Internal loss composition analysis of Marine steel/composite system [J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(01): 15-24+218. [5] Gonsalves H T, Kumar M G, Ramesh M. Dynamic study of composite material shaft in high-speed rotor-bearing systems[J]. International Journal of Vehicle Noise and Vibration, 2019, 15(2-3). [6] Ri K, Choe K, Han P, et al. The effects of coupling mechanisms on the dynamic analysis of composite shaft[J]. Composite Structures, 2019, 224. [7] Liangliang Q, Caihong L, Xuduo Y, et al. Effect of reinforced fibers on the vibration characteristics of fibers reinforced composite shaft tubes with metal flanges[J]. Composite Structures, 2021, 275. [8] 任勇生, 时玉艳, 张玉环. 材料内阻对旋转复合材料轴动力学稳定性的影响研究[J]. 振动与冲击, 2017, 36(23): 181-186+200. REN Yongsheng, SHI Yuyan, ZHANG Yuhuan. Effects of internal damping on dynamic stability of a rotating composite shaft [J]. Journal of Vibration and Shock, 2017, 36(23): 181-186+200. [9] 任勇生, 张玉环, 马静敏. 复合材料轴转子系统动力学研究进展[J]. 振动与冲击, 2018, 37(14): 1-9+21. REN Yongsheng, ZHANG Yuhuan, MA Jingmin. Research advances on composite shaft rotordynamics [J]. Journal of Vibration and Shock, 2018, 37(14): 1-9+21. [10] 仲惟燕. 复合材料薄壁轴动力学建模与振动特性研究[D]. 山东科技大学, 2020. ZHONG Weiyan. Study on dynamic modeling and vibration characteristics of composite thin-walled shaft [D]. Shandong University of Science and Technology, 2020. [11] 田波. 复合材料轴段振动特性试验及研究[C]. 2016年度声学技术学术会议论文集. 《声学技术》编辑部, 2016: 8-12. TIAN Bo. The trial and research of shaft-segment with composite materials [C]. Proceedings of the 2016 Academic Conference on Acoustic Technology, Editorial Office of Technical Acoustics, 2016: 8-12. [12] 樊晓斌, 郑劲东, 杨勇等.复合材料中间轴振动试验研究[J]. 材料开发与应用, 2013, 28(05): 79-83. FAN Xiaobin, ZHENG Jingdong, YANG Yong, et al. Investigation on Vibration of Composite Medium-shaft [J]. Development and Application of Materials, 2013, 28(05): 79-83. [13] Utkarsh S, Kumar P Y, Shrikant V, et al. Finite element analysis of vehicle composite propeller shaft[J]. Materials Today: Proceedings, 2022, 56(P1): 395-399. [14] Safa A B, Majdi Y, Slim B, et al. Modified equivalent single layer theory for dynamic analysis of rotating composite shafts[J]. Mechanics of Advanced Materials and Structures, 2020, 28(23): 2399-2407. [15] 朱翔, 李天匀, 赵耀等.基于有限元的损伤结构功率流可视化研究[J]. 机械工程学报, 2009, 45(02): 132-137. ZHU Xiang, LI Tianyun, ZHAO Yao, et al. Visualization research on the power flow characteristics of damaged structures based on the finite element method [J]. Journal of Mechanical Engineering, 2009, 45(02): 132-137. [16] 刘林芽, 李辉, 秦佳良等. 考虑扣件温频变的车轨桥垂向耦合系统振动能量研究[J]. 振动与冲击, 2022, 41(01): 161-168. LIU Linya, LI Hui, QIN Jialiang, et al. Vibration energy of vehicle-rail-bridge vertical coupled system considering fastener temperature frequency variation [J]. Journal of Vibration and Shock, 2022, 41(01): 161-168.

PDF(2299 KB)

Accesses

Citation

Detail

段落导航
相关文章

/