考虑衬砌结构特征的盾尾同步注浆检测方法

崔庆宇1,周晗旭1,车爱兰1,陈俊伟2,余雪娟3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 77-85.

PDF(3075 KB)
PDF(3075 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (15) : 77-85.
论文

考虑衬砌结构特征的盾尾同步注浆检测方法

  • 崔庆宇1,周晗旭1,车爱兰1,陈俊伟2,余雪娟3
作者信息 +

Shield tail synchronous grouting detection method considering characteristics of lining structure

  • CUI Qingyu1, ZHOU Hanxu1, CHE Ailan1, CHEN Junwei2, YU Xuejuan3
Author information +
文章历史 +

摘要

盾尾同步注浆是盾构隧道施工过程中的重要环节,注浆效果不良产生的管片与地基间脱空会造成隧道和地表的不均匀变形,严重影响其安全性和耐久性。为实现对复杂结构管片壁后注浆效果的检测,提出一种基于冲击弹性波具有管片结构特征的注浆效果检测方法。通过全尺模型试验研究了衬砌管片的弹性波响应强度特征,定量分析了管片注浆孔和边界对响应强度检测结果的影响,结果表明管片边界影响范围在0.5m以内,注浆孔影响范围为一个长轴1m、短轴0.35m的椭圆区域。通过三维曲面拟合响应强度分布特征,以响应强度差值作为注浆效果的评价指标评估注浆效果,对比检测结果显示模型试验预设缺陷的识别准确率为82.8%,并将该方法应用于江阴靖江长江隧道盾尾同步注浆检测中,为盾构隧道的同步注浆施工提供有效参考依据。

Abstract

Synchronous grouting at shield tail is an important phase in the construction process of shield tunnels. The voids between segment and foundation caused by poor grouting would cause uneven deformation of tunnel and ground surface, seriously affecting its safety and durability. In order to effectively detect the grouting quality behind segment wall with complex structures, a detection method based on the elastic wave principle considering the structural characteristics of segment is proposed. The elastic wave response of segment is studied through full-scale model tests. The impact of grouting hole and segment boundary on response intensity detection results is quantitatively analyzed. Results show that the influence range of segment boundaries is 0.5m, and the influence range of grouting holes is an elliptical area with a long axis of 1m and a short axis of 0.35m. Three-dimensional surface is used to fit the distribution of response intensity characteristic, and the response intensity difference is adopted as an evaluation index for grouting quality. The detection results show that the identification accuracy of preset defects in the model test reaches 82.8%. This method is applied in the synchronous grouting inspection at shield tail of Jiangyin Jingjiang Tunnel, and it can provide an effective reference for the synchronous grouting construction of the shield tunnel.

引用本文

导出引用
崔庆宇1,周晗旭1,车爱兰1,陈俊伟2,余雪娟3. 考虑衬砌结构特征的盾尾同步注浆检测方法[J]. 振动与冲击, 2024, 43(15): 77-85
CUI Qingyu1, ZHOU Hanxu1, CHE Ailan1, CHEN Junwei2, YU Xuejuan3. Shield tail synchronous grouting detection method considering characteristics of lining structure[J]. Journal of Vibration and Shock, 2024, 43(15): 77-85

参考文献

[1] 李宇杰,徐会杰,宋国侠等.盾构隧道整体道床脱空病害整治技术应用研究[J].土木工程学报,2020,53(S1):119-123. Li Yujie, Xu Huijie, Song Guoxia, et al. Treatment technology of monolithic ballast disengaging in shield tunnel[J]. Journal of Civil engineering,2020,53(S1):119-123. [2] Han L, Ye G L, Chen J J, et al. Pressures on the lining of a large shield tunnel with a small overburden: A case study[J]. Tunnelling and Underground Space Technology, 2017,64:1-9. [3] 叶飞,苟长飞,陈治等.盾构隧道同步注浆引起的地表变形分析[J].岩土工程学报,2014,36(04):618-624. Ye Fei, Gou Changfei, Chen Zhi, et al. Ground surface deformation caused by synchronous grouting of shield tunnels [J]. Chinese Journal of Geotechnical Engineering,2014,36(04):618-62 [4] Ding W, Duan C, Zhu Y, et al. The behavior of synchronous grouting in a quasi-rectangular shield tunnel based on a large visualized model test[J]. Tunnelling and Underground Space Technology, 2019,83:409-424. [5] 刘映晶,杨杰,朱汉华等.一种新的高渗透性地层中盾构隧道同步注浆浆液损失的多物理场模拟方法[J].岩土力学,2023(09):1-13. Liu Yingjing, Yang Jie, Zhu Hanhua et al. A novel multiphysics modelling approach for grout loss analysis of backfill grouting in highly permeable soils during TBM tunnelling [J]. Journal of Rock and Soil Mechanics,2023(09):1-13. [6] 柳献,张雨蒙,王如路.地铁盾构隧道衬砌结构变形及破坏探讨[J].土木工程学报,2020,53(05):118-128. Liu Xian, Zhang Yumeng, Wang Lulu. Discussion on deformation and failure of segmental metro tunnel linings [J]. Journal of Civil Engineering, 2020,53(05):118-128. [7] Breysse D. Nondestructive evaluation of concrete strength: An historical review and a new perspective by combining NDT methods[J]. Construction and Building Materials,2012,33:139-163. [8] 李威昊,张景科,王南等.土遗址裂隙注浆加固效果评价中的无损检测应用[J].兰州大学学报(自然科学版),2023,59(01):80-89. Li Weihao, Zhang Jingke, Wang Nan, et al. Application of non-destructive testing to evaluate the grouting reinforcement effect of fissures in earthen sites [J]. Journal of Lanzhou University (Natural Science Edition),2023,59(01):80-89. [9] Wang J, Zhang J, Cohn A G G, et al.Arbitrarily-oriented tunnel lining defects detection from Ground Penetrating Radar images using deep Convolutional Neural networks[J]. Automation in construction, 2022,133. [10] 田闯,曾里,黄钟晖等.盾构隧道同步注浆实时检测技术及注浆效果分析[J].城市轨道交通研究,2020,23(01):124-128. Tian Chuang, Zeng Li, Huang Zhonghui, et al. Real-time detection technology of synchronous grouting in shield tunnel and Analysis of grouting effect [J]. Urban Rail Transit Research,2020,23(01):124-128. [11] Li S, Gu X, Xu X, et al. Detection of concealed cracks from ground penetrating radar images based on deep learning algorithm [J]. Construction and Building Materials, 2021,273. [12] 王赟,杨春,芦俊.薄互层弹性波反演面临的困境[J].地球物理学报,2018,61(03):1118-1135. Wang Yun, Yang Chun, Lu Jun. Dilemma faced by elastic wave inversion in thinly layered media[J]. Chinese Journal of Geophysics,2018,61(03):1118-1135. [13] 吕小彬,吴佳晔.冲击弹性波理论与应用[M].中国水利水电出版社,2016. Lv Xiaobin, WU Jiaye. Shock Elastic Wave Theory and Application [M]. China Water Resources and Hydropower Press,2016. [14] 张盼,邢贞贞,胡勇.基于弹性波全波形反演的主被动源多分量混采地震数据速度建模[J].地球物理学报,2019,62(10):3974-3987. Zhang Pan, Xing Zhenzhen, Hu Yong. Velocity construction using active and passive multi-component seismic data based on elastic full waveform inversion[J]. Chinese Journal of Geophysics,2019,62(10):3974-3987. [15] 黄欧龙,王华,张寒韬等.弹性波CT技术在防护工程混凝土质量检测中的应用[J].防护工程,2018,40(06):56-60. Huang Oulong, Wang Hua, Zhang Hantao. Application of elastic wave CT technique for concrete quality test in the protective engineering[J]. Protective Engineering, 2018,40(06):56-60. [16] 温晓光.基于弹性波CT成像法的混凝土桥梁内部缺陷检测评估[J].公路,2023,68(01):124-128. Weng Xiaoguang. Detection and Evaluation of Internal Defects of Concrete Bridges based on Elastic wave CT imaging [J]. Highway,2023,68(01):124-128. [17] 林天翔,冯少孔,叶冠林等.顶管施工中管壁与围土间不同接触关系的冲击响应特征[J].岩土工程学报,2021,43(10):1924-1932+1961. Lin Tianxiang, Feng Shaokong, Ye Guanlin. Impact response characteristics under different contact relationships between pipe and soil in pipe-jacking construction[J]. Chinese Journal of Geotechnical Engineering,2021,43(10):1924-1932+1961. [18] 韩悦,周晗旭,袁刚烈等.基于水下声波映像法的桥梁基础抛石防护检测与评估[J].振动与冲击,2021,40(20):100-107. Han Yue, ZHOU Hanxu, YUAN Ganglie. Detection and evaluation of riprap countermeasure to bridge foundations based on an underwater sonic imaging method[J]. Journal of Vibration and Shock, 2021, 40(20):100-107. [19] 冯少孔,黄涛,李海枫.大型预应力混凝土立墙内裂缝检测与成因浅析[J].上海交通大学学报,2015,49(07):977-982. Feng Shao-kong, Huang Tao, LI Hai-feng. Detection and Cause Analysis of Internal Cracks for Large Scale 2-Directional Pre-Stressed Concrete Walls [J]. Journal of Shanghai Jiao Tong University,2015,49(07):977-982. [20] 张长亮,李松辉,张龑等.冲击映像法在深中通道沉管隧道钢壳混凝土界面脱空检测的应用研究[J].隧道建设(中英文), 2022,42(12):2138-2147. Zhang Changliang, Li Songhui, Zhang Yan et al. Application of Impact Imaging Method in Void Detection of a Steel Shell Concrete Interface in Shenzhen-Zhongshan Link Immersed Tunnel [J]. Tunnel Construction (Chinese and English), 2022,42(12):2138-2147. [21] 李炎隆,王军忠,陈俊豪等.冲击回波法对混凝土内部损伤检测的试验研究[J].应用力学学报,2020,37(01):149-154+478. Li Yanlong, Wang Junzhong, Chen Junhao, et al. Experimental study on internal damage detection of concrete by impact echo method[J]. Chinese Journal of applied Mechanics,2020,37(01):149-154+478. [22] 杨勇,芦俊伟,李荣喆等.基于Burg功率谱的无砟轨道功能层缺陷边缘估计方法研究[J].振动与冲击,2020,39(10):1-6. Yang Yong, Lu Junwei, Li Rongzhe, et al. Analysis on edge estimation of functional layer defect in ballastless track based on Burg power spectrum [J]. Journal of Vibration and Shock, 2020,39(10):1-6. [23] 朱旻,陈湘生,王雪涛.盾构隧道衬砌结构性能演化分析与思考[J].工程力学,2022,39(03):33-50. Zhu Min, Chen Xiangsheng, Wang Xuetao. Analysis and thinking on structural performance evolution of shield tunnel lining[J]. Engineering Mechanics,2022,39(03):33-50. [24] Liu X, Dong Z, Bai Y, et al. Investigation of the structural effect induced by stagger joints in segmental tunnel linings: First results from full-scale ring tests[J]. Tunnelling and Underground Space Technology, 2017,66:1-18. [25] Ziaja Dominika, Jurek, Michal, Wiater, Agnieszka. Elastic Wave Application for Damage Detection in Concrete Slab with GFRP Reinforcement[J]. Materials,2022,15(23). [26] Ding Lieyun, Ma Ling, Luo Hanbin, et al. Wavelet Analysis for tunneling-induced ground settlement based on a stochastic model[J]. Tunnelling and Underground Space Technology, 2011,26(5):619-628. [27] 唐寅,车爱兰.钢壳混凝土管节组合结构注浆效果扫描成像评价方法研究[J].振动与冲击,2019,38(21):148-154. Tang Yin, Che Ailan. A scanning imaging evaluation method for grouting effect of a steel shell concrete tube joint structure[J]. Journal of Vibration and Shock, 2019,38(21):148-154. [28] Wu Peng, Che Ailan. Spatiotemporal Monitoring and Evaluation Method for Sand-Filling of Immersed Tube Tunnel Foundation[J]. Applied Sciences, 2021,11(3). [29] 刘中宪,王治坤,梁建文等.基于球面波势函数基本解方法的弹性波三维散射与动应力求解[J].岩土力学,2019,40(07):2730-2738. Liu Zhongxian, Wang Zhikun, Liang Jianwen et al. Method of fundamental solution based on complete spherical wave potential solutions to 3-D elastic wave scattering and dynamic stress [J]. Journal of Rock and Soil Mechanics,2019,40(07):2730-2738. [30] 李涛,王颖轶,黄醒春.基于冲击映像法盾构同步注浆效果检测与评价[J].地下空间与工程学报,2022,18(06):1962-1967+1978. Li Tao, Wang Yingyi, Huang Xingchun. Detection and Evaluation of Shield Synchronous Grouting Effect Based on Impact Image Method [J]. Chinese Journal of Underground Space and Engineering,2022,18(06):1962-1967+1978 [31] 武鹏,袁刚烈,车爱兰.基于弹性波映像识别法的钢管隧洞缺陷检测[J].重庆交通大学学报(自然科学版),2022,41(08):67-72. Wu Peng, Yuan Ganglie, Che Ailan. Defect Detection of Steel Tube Tunnel Based on Elastic Wave Image Recognition Method [J]. Journal of Chongqing Jiaotong University (Natural Science Edition),2022,41(08):67-72.

PDF(3075 KB)

Accesses

Citation

Detail

段落导航
相关文章

/