空间效应下超长型钢混凝土结构地震响应研究

邓敬旻, 赵起超, 林焯铭, 彭修宁

振动与冲击 ›› 2024, Vol. 43 ›› Issue (17) : 163-176.

PDF(5353 KB)
PDF(5353 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (17) : 163-176.
论文

空间效应下超长型钢混凝土结构地震响应研究

  • 邓敬旻,赵起超,林焯铭,彭修宁
作者信息 +

Seismic response of ultra-long steel reinforced concrete structures under spatial effects

  • DENG Jingmin, ZHAO Qichao, LIN Zhuoming, PENG Xiuning
Author information +
文章历史 +

摘要

超长结构空间效应下的地震响应分析是当前抗震研究的热点之一,空间效应对尺寸较小的建筑影响不大,但对平面投影尺度很大的结构地震响应的影响不可忽略。在传统三角级数法合成人工一维地震的基础上采用了三维相干函数矩阵,通过选取合适的模型及相应参数合成考虑空间效应的人工三向地震动。采用了4条自然波及2条人工波对超长型钢混凝土结构进行抗震计算。结果表明:超长结构不适宜仅采用振型分解反应谱法进行地震计算,还需采用地震时程分析法补充计算;与一致激励相比,行波效应会促使构件内力响应两极分化,既能减小整体内力响应,又能增大部分峰值内力,其效果不仅与视波速有关还与激励方向有关,低视波速和长边激励时行波效应加强;与单向激励相比,双向激励下的行波效应影响更复杂,既能改变构件内力响应和主、次动力响应的变化趋势,也能改变不利构件的分布位置;相干效应与行波效应叠加时,会进一步改变构件动力和内力响应。高视波速下相干效应为主导,底层构件内力响应增大。低视波速下行波效应为主导,地震响应呈现两极分化;不利构件的分布不仅与建筑的开洞、设缝及楼层刚度变化等因素有关,还与地震激励方向有关,不利构件沿激励方向有规律地延伸分布。

Abstract

The seismic response analysis of super-long structures under spatial effects is one of the hotspots, The spatial effects have little effect on small buildings, but it is difficult to ignore for the seismic response of structures with large planar projection scales. On the basis of the traditional trigonometric series method, a three-dimensional coherence function matrix is used to synthesize artificial three-dimensional seismic motion considering spatial effects. Four natural waves and two artificial waves are used for seismic calculations of super-long steel-concrete structures. The results indicate that for super-long structures, it is insufficient to use only the response spectrum method and also necessary to use the time-history analysis method for seismic calculations. The traveling wave effect causes polarization of internal force responses in members, lead to a decrease in overall internal force and an increase in some peak forces. The traveling wave effect is more pronounced at low apparent wave speeds and the long edge excitation. Under bidirectional excitation, the influence of traveling wave effect is complex, which can alter internal forces and dynamic responses, as well as the distribution of adverse members. The combination of coherent effects and traveling wave effects will further alter the dynamic and internal force response of members. Coherent effects dominate at high visual wave speeds and increase the internal force response of the bottom members. The traveling wave effect dominates at low apparent wave speeds and lead to polarization of seismic responses. The distribution of unfavorable members are related to factors such as the location of openings and joints in the building, changes in floor stiffness, and the direction of earthquake excitation. Unfavorable members extend along the direction of excitation in a regular manner.

关键词

超长结构 / 地震动空间效应 / 人工三向地震动 / 行波效应 / 相干效应

Key words

super-long structure / spatial effect of seismic motion / artificial three-dimensional seismic motion / traveling wave effect / coherent effect

引用本文

导出引用
邓敬旻, 赵起超, 林焯铭, 彭修宁. 空间效应下超长型钢混凝土结构地震响应研究[J]. 振动与冲击, 2024, 43(17): 163-176
DENG Jingmin, ZHAO Qichao, LIN Zhuoming, PENG Xiuning. Seismic response of ultra-long steel reinforced concrete structures under spatial effects[J]. Journal of Vibration and Shock, 2024, 43(17): 163-176

参考文献

[1]  建筑抗震设计规范: GB 50011-2010[S]. 北京: 中国建筑工业出版社, 2016.
Code for seismic design of buildings:GB 50011-2010 [S]. Beijing: China Architecture and Building Press, 2016.
[2] 景月岭, 周召虎, 王洋洋, 等. 基于Matlab的人工地震动合成及校正[J]. 水电能源科学, 2019, 37(08): 65-68+121.
JING Yue-ling, ZHOU Zhao-hu, WANG Yang-yang, et al. Artificial ground motion synthesis and correction based on Matlab [J]. Water Resources and Power,2019.
[3]  丁佳伟, 何浩祥, 闫晓宇. 地震动功率谱改进模型及其在人工地震动合成中的应用[J].振动与冲击, 2020, 39(21): 258-266.
DING Jia-wei, HE Hao-xiang, YAN Xiao-yu. Improved model of seismic power spectrum and its application in artificial ground motion synthesis [J].Journal of Vibration and Shock, 2020.
[4]  范重,柴丽娜,张宇, 等. 超长结构地震行波效应影响因素研究[J].建筑结构学报,2018,39(08).
FAN Zhong, CHAI Li-na, ZHANG Yu, et al. Study on influential factors for super-long structures under seismic traveling wave action [J].Journal of Building Structures,2018.
[5]  范重, 刘学林, 张宇, 等. 航站楼复杂超长结构行波效应分析[J]. 建筑科学与工程学报,2019,36(01):56-66.
Fan Zhong, LIU Xue-lin, ZHANG Yu, et al. Analysis of traveling wave effect of complicated super-long structures for terminal buildings [J].Journal of Architecture and Civil Engineering, 2019.
[6]  袁明智. 非一致地震作用下地下结构地震响应研究[D]. 武汉理工大学, 2019.
YUAN Ming-zhi. Seismic response of underground structure under non-uniform seismic excitation [D]. Wuhan University of Technology, 2019.
[7]  周春娟, 王阳光, 海然, 等. 大跨度空间管桁架结构地震响应分析[J].建筑技术,2022,53(12):1707-1710.
ZHOU Chun-juan, WANG Yang-guang, HAI Ran, et al. Seismic response analysis of long-span space pipe truss structure [J]. Architecture Technology, 2022.
[8]  罗赤宇, 区彤, 谭坚, 等. 广州白云国际机场三号航站楼结构抗震设计[J].建筑结构,2022,52(21):58-65.
LUO Chi-yu, OU Tong, TAN Jian, et al. Structural seismic design of Guangzhou Baiyun international airport terminal 3 [J]. Building Structure, 2022.
[9]  袁勇, 朱力, 禹海涛, 等. 综合管廊抗震分析研究进展综述[J].隧道建设(中英文), 2022,42(11).
YUAN Yong, ZHU Li, YU Hai-tao, et al. Review on seismic analysis of utility tunnels [J]. Tunnel Construction, 2022.
[10] 混凝土结构设计规范: GB 50010 - 2010[S]. 北京: 中国建筑工业出版社, 2015.
Code for design of concrete structures:GB 50010-2010 [S]. Beijing: China Architecture and Building Press, 2015.
[11] 屈铁军, 王前信. 空间相关的多点地震动合成(I)基本公式[J]. 地震工程与工程振动, 1998(01): 8-15.
QU Tie-jun, WANG Qian-xin. Simulation of spatial correlative time histories of multi-point ground motion, part I: fundamental formulas [J]. Earthquake Engineering and Engineering Dynamics, 1998(01):8-15.
[12] 屈铁军, 王前信. 空间相关的多点地震动合成(Ⅱ)──合成实例[J].地震工程与工程振动,1998.
QU Tie-Jun, WANG Qian-xin. Simulation of spatial correlative time histories of multi-point ground motion, part II: application of fundamental formulas [J]. Earthquake Engineering and Engineering Vibration, 1996.
[13] TJ Liu, HP Hong. Simulation of horizontal ground motions with spatial coherency in two orthogonal horizontal directions [J].Journal of Earthquake Engineering, 2015.
[14] TJ Liu, HP Hong. Assessment of spatial coherency using Tri-directional ground motions [J]. Journal of Earth-quake Engineering, 2016.
[15] 杜修力, 陈厚群. 地震动随机模拟及其参数确定方法[J]. 地震工程与工程振动, 1994, 14(4): 1-5.
DU Xiu-li, CHEN Hou-qun. Random simulation and its parameter determination method of earthquake ground motion [J]. Earthquake Engineering and Engineering Vibration, 1994.
[16] 杜修力, 胡晓, 陈厚群. 强震地运动随机过程模拟[J]. 地震学报, 1995(01): 103-109.
DU Xiu-li, HU Xiao, CHEN Hou-qun. Simulation of random process of strong earthquake ground motion [J]. Acta Seismologica Sinica, 1995.
[17] JN Brune,RJ Archuleta,S Hartzell. Far-field S-wave spectra, corner frequencies, and pulse shapes[J]. Journal of Geophysical Research: JGR, 1979.
[18] 张敏政. 近场地震动工程参数的估计[D]. 哈尔滨: 国家地震局工程力学研究所, 1986.
ZHANG Min-zheng. Estimation of near-fault earthquake engineering parameters[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration,1986.
[19] 周佩佩, 巢斯.对应新抗震规范反应谱的功率谱模型参数研究[J]. 建筑结构, 2013, 43(S2): 430-435.
ZHOU Pei-pei, CHAO Si. Parameters research on seismic power spectrum model based on the new seismic design code for buildings[J]. Building Structure, 2013.
[20] Jenkins G M, Watts D G. Spectral analysis and its applications [M]. Holden-Day, San Francisco, 1968.
[21] Harichandran R S, Vanmarcke E H. Stochastic variation of earthquake ground motion in space and time[J]. Journal of engineering mechanics, 1986.
[22] 许谋奎, 马人乐, 张增军, 等. 空间相关多点地震动合成研究[J]. 低温建筑技术, 2006(06): 47-49.
XU Mou-kui, MA Ren-yue, ZHANG Zeng-jun, et al. Study on simulation of spatial correlated multi-point ground motion [J]. Low Temperature Architecture Technology, 2006.
[23] 薛素铎, 王雪生, 曹资. 基于新抗震规范的地震动随机模型参数研究[J].土木工程学报, 2003, 36(5): 5-10.
XUE Su-duo, WANF Xue-sheng, CAO Zi. Parameters study on seismic random model based on the new seismic code [J]. China Civil Engineering Journal, 2003.
[24] 胡世德, 范立础. 江阴长江公路大桥纵向地震反应分析[J].同济大学学报(自然科学版), 1994(04):433-438.
HU Shi-de FAN Li-chu. The longitudinal earthquake response analysis for the JiangYin Yangtze River Bridge [J]. Journal of Tongji University(Natural Science), 1994.
[25] 杨律磊, 孙意斌, 龚敏锋, 等.超长连体结构地震行波效应影响研究[J].建筑结构,2022,52(20):22-28.
YANG Lv-lei, SUN Yi-bin, GONG Min-feng, et al. Study on the influence of traveling wave effect for ultra-long connected structure [J]. Building Structure, 2022.
[26] 王田增. 超长网壳结构地震响应分析[D].河北联合大学,2014.
WANG Tian-zeng. Seismic response analysis of long reticulated shell structures [D]. Hebei United University, 2014.

PDF(5353 KB)

Accesses

Citation

Detail

段落导航
相关文章

/