地震作用下散体有砟轨道动力特性及能量传递研究

李毅1, 2, 徐旸1, 2, 赵一馨3, 郄录朝1, 2, 杨轶科1, 2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (17) : 254-259.

PDF(2176 KB)
PDF(2176 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (17) : 254-259.
论文

地震作用下散体有砟轨道动力特性及能量传递研究

  • 李毅1,2,徐旸1,2,赵一馨3,郄录朝1,2,杨轶科1,2
作者信息 +

Dynamic characteristics and energy transfer of loose ballasted track under seismic action

  • LI Yi1,2, XU Yang1,2, ZHAO Yixin3, QIE Luchao1,2, YANG Yike1,2#br#
Author information +
文章历史 +

摘要

地震波在轨道结构的传播过程伴随着能量的释放与传递,而有砟轨道的散粒体特性又使得轨道结构的动力响应更为复杂。本文提出了基于轨道能量系数以及HHT的地震过程中轨道结构能量分析方法,并建立了离散元有砟道床地震动力响应理论模型,研究不同地震烈度下道床的动力响应及能量传递,主要结论有:(1)地震动从道床底层传递至顶层时,能量平均衰减了47.14%,能量系数随地震烈度呈现出先增后降的变化趋势。(2)随地震烈度的增加,道床横向阻力和支承刚度呈现出不同的变化规律。道床横向阻力随地震烈度升高而逐渐降低,支承刚度随地震烈度升高呈现先升后降的变化规律。(3)直接堆积边坡和设置挡墙两种结构在地震作用下的动力响应存在差异。设置挡墙后,道砟颗粒接触与运动分布更加均匀,震后道床横向阻力最高提升6.95%,支承刚度提升27.28%,能量系数提升6.43%。建议在高地震烈度区采取设置挡墙替代传统的边坡有砟轨道结构。

Abstract

The propagation of seismic wave in the track structure is accompanied by the release and transmission of energy, and the granular characteristics of ballast track make the dynamic response more complex. In this paper, the power analysis method of track structure during earthquake based on energy coefficient and HHT was proposed, and the discrete element theoretical model of seismic response of ballast bed was established to study the dynamic response and energy transfer of ballast bed under different seismic intensities. The main conclusions are: 1. When the ground motion is transferred from the bottom layer of the ballast bed to the top layer, the average energy attenuation is 47.14%. The energy coefficient shows a trend of increasing first and then decreasing with seismic intensity. 2. As the seismic intensity increases, the lateral resistance and support stiffness of the track bed exhibit different variation patterns. The lateral resistance of the track bed gradually decreases with the increase of seismic intensity, and the support stiffness shows a pattern of first increasing and then decreasing with the increase of seismic intensity. 3. There are differences in the dynamic response of two types of structures, namely, directly accumulating slopes and setting retaining walls, under earthquake action. After the installation of retaining walls, the contact and motion distribution of ballast particles are more uniform. After the earthquake, the maximum lateral resistance of the track bed increases by 6.95%, the support stiffness increases by 27.28%, and the energy coefficient increases by 6.43%. It is recommended to replace traditional slope ballast track structures with retaining walls in areas with high seismic intensity.

关键词

有砟轨道 / 地震响应 / 数值计算 / 能量传递 / 地震能量系数

Key words

ballast track / earthquake response / numerical calculation / energy transfer / seismic energy coefficient

引用本文

导出引用
李毅1, 2, 徐旸1, 2, 赵一馨3, 郄录朝1, 2, 杨轶科1, 2. 地震作用下散体有砟轨道动力特性及能量传递研究[J]. 振动与冲击, 2024, 43(17): 254-259
LI Yi1, 2, XU Yang1, 2, ZHAO Yixin3, QIE Luchao1, 2, YANG Yike1, 2. Dynamic characteristics and energy transfer of loose ballasted track under seismic action[J]. Journal of Vibration and Shock, 2024, 43(17): 254-259

参考文献

[1] Sato S, SUZUKI S, TAKATANI H. Buckling Stability of Railway Track in Earthquake[C]. Ninth World Conference on Earthquake Engineering. 1988, 6.
[2] Sekine E , Ishikawa T . Deformation Characteristics of Ballasted Track during Earthquake[J]. Quarterly Report of RTRI, 2013, 54(2):104-111.
[3] Kumakura T, Ishii H, Konishi T. Seismic assessment of ballasted tracks in large-scale earthquakes[J]. JR East Technical Review, 2010, 17.
[4] Nakamura T , Sekine E , Shirae Y . Assessment of Aseismic Performance of Ballasted Track with Large-scale Shaking Table Tests[J]. Quarterly Report of RTRI, 2011, 52(3):156-162.
[5] Nakamura T, MOMOYA Y, Hayano K, et al. Characteristics of lateral resistance of ballasted tracks under seismic conditions[J]. Journal of Japan Society of Civil Engineers, Ser. E1 (Pavement Engineering), 2015, 70(3)
[6] Cao L, Yang C, Zhang J. Derailment Behaviors of the Train-Ballasted Track-Subgrade System Subjected to Earthquake Using Shaking Table[J]. KSCE Journal of Civil Engineering, 2020, 24(10): 2949-2960.
[7] Esmaeili M ,  Noghabi H H . Investigating Seismic Behavior of Ballasted Railway Track in Earthquake Excitation Using Finite-Element Model in Three-Dimensional Space[J]. Journal of Transportation Engineering, 2013, 139(7):697-708.
[8] Jing G Q , Luo Q , Wang Z , et al. Micro-analysis lateral ballast resistance of seismic characteristics[J]. Journal of Vibroengineering, 2014, 16(1):533-544.
[9] Huang N E, Shen Z, Long S R et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc R Soc Lond A, 1998, 454: 903-995.
[10] 王姣. 希尔伯特黄变换在地震数据处理中的应用[D]. 中国石油大学(华东), 2013.
WANG Jiao. The application of the Hilbert-Huang Transform in seismic data processing[D]. China University of Petroleum, 2013.
[11] 陈子雄. 小波变换与希尔伯特一黄变换在结构抗震中的应用研究[D]. 福州大学, 2006.
CHEN Zixiong. The application study of Wavelet transform and Hilbert-Huang transform (HHT) in structural aseismatic engineering[D]. Fuzhou University, 2006.
[12] 孙列. 基于希尔伯特一黄变换的地震作用结构损伤识别[D]. 浙江大学, 2007.
SUN Lie. Structural damage identification under earthquake based on Hilbert-Huang transform[D]. Zhejiang University, 2007.
[13] 贾宝新,周志扬,苑文雅.高铁地震信号衰减特征分析及震源函数验证[J].振动与冲击,2022,41(24):226-233.
JIA Baoxin, ZHOU Zhiyang, YUAN Wenya. Analysis on the attenuation characteristics of seismic signal produced by high-speed train and verification of the source function[J]. Journal of vibration and shock, 2022,41(24):226-233.
[14] 郑君里, 应启珩, 杨为理. 信号与系统[M], 高等教育出版社, 2011.
ZHENG Junli, YING Qiheng, YANG Weili. Signals and Systems[M]. Higher education press, 2011.
[15] SHI Shunwei, GAO Liang, XIAO Hong, et al. Research on ballast breakage under tamping operation based on DEM–MBD coupling approach[J]. Construction and Building Materials. 2021, 272: 121810.
[16] TB/T 2140-2008, 铁路碎石道砟[S]. 北京: 中国铁道出版社, 2008.
TB/T 2140-2008, Railway ballast[S]. Beijing: China railway publishing house, 2008.
[17] XU Yang, YU Wenying, QIE Luchao, et al. Analysis of influence of ballast shape on abrasion resistance using discrete element method [J]. Construction and Building Materials.2021, 273: 121708.
[18] TB/T 3448-2016, 铁路碎石道床状态参数测试方法[S]. 北京: 中国铁道出版社, 2016.
TB/T 3448-2016, Testing method of railway ballast bed parameters[S]. Beijing: China railway publishing house, 2016.
[19] TB/T 10082-2017, 铁路轨道设计规范[S]. 北京: 中国铁道出版社, 2017.
TB/T 10082-2017, Code of design of railway track[S]. Beijing: China railway publishing house, 2017.
[20] GB/T 17742-2020, 中国地震烈度表[S]. 北京:中国质检出版社, 2020.
GB/T 17742-2020, The Chinese seismic intensity scale[S]. Beijing: China Quality Press, 2020.

PDF(2176 KB)

131

Accesses

0

Citation

Detail

段落导航
相关文章

/