被动围压条件下非饱和黏土动态压缩性能试验研究

赵伏田1, 刘军2, 贾永胜3, 4, 姚颖康3, 4

振动与冲击 ›› 2024, Vol. 43 ›› Issue (17) : 27-33.

PDF(2722 KB)
PDF(2722 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (17) : 27-33.
论文

被动围压条件下非饱和黏土动态压缩性能试验研究

  • 赵伏田1,刘军2,贾永胜3,4,姚颖康3,4
作者信息 +

Experimental study on dynamic compression performance of unsaturated clay under passive confining pressure condition

  • ZHAO Futian1, LIU Jun2, JIA Yongsheng3,4, YAO Yingkang3,4
Author information +
文章历史 +

摘要

为揭示软黏土的应变率效应及建立动态响应参数及其影响因素的定量关系,设计并开展了被动围压条件下的非饱和黏土SHPB动态压缩试验,分析了应变率效应、冲击次数、含水率变化对软黏土动态力学特性的影响。试验结果表明:非饱和黏土的动弹性模量与动应力峰值具有显著的应变率效应;当试样的应变率处于255~587s-1范围内时,动态响应参数与应变率在双对数坐标系下表现出良好的线性拟合关系,且线性拟合曲线的斜率k反映了动力响应参数随应变率变化的敏感程度;含水率对软黏土应变率敏感性影响较大,其中,35%含水率试样动力响应参数的率敏感性最为显著,而39%含水率试样动力响应的率敏感性最差;此外,动力响应参数表现出随冲击次数的增加呈幂函数增长,冲击气压与试样含水率均对重复冲击载荷下的软黏土动力响应有较大影响。

Abstract

In order to reveal the strain rate effect of soft clay and establish a quantitative relationship of dynamic parameters and its influencing factors, one-dimensional impact tests were conducted on remolded soft clay with the aid of a split Hopkinson pressure bar (SHPB) system under passive confining pressure condition. The influence of strain rate effect, moisture content and numbers of impact on the dynamic behavior of soft clay were analyzed. The results show that when the strain rate is in the range of 255~597 s-1, the dynamic elastic modulus and peak stress of soft clay increase linearly with the increase of strain rate in the double logarithmic coordinates. The sensitivity of dynamic response parameters corresponding to strain rate can be reflected by the slope k of linear fitting function, which is highly affected by moisture content. The strain rate sensitivity of dynamic response with 35% water content specimen is highest, while that of 39% water content specimen is lowest. Besides, dynamic response parameters of soft clay grow as a power function with the increase of numbers of impact, and the impact pressure and moisture content have a significant influence on the dynamic response of soft clay under repeated one-dimensional impacts.

关键词

软黏土 / 动力特性 / 霍普金森压杆 / 应变率效应 / 含水率 / 冲击次数

Key words

soft clay / dynamic properties / Split Hopkinson Pressure Bar (SHPB) / strain rate effect / moisture content / numbers of impact

引用本文

导出引用
赵伏田1, 刘军2, 贾永胜3, 4, 姚颖康3, 4. 被动围压条件下非饱和黏土动态压缩性能试验研究[J]. 振动与冲击, 2024, 43(17): 27-33
ZHAO Futian1, LIU Jun2, JIA Yongsheng3, 4, YAO Yingkang3, 4. Experimental study on dynamic compression performance of unsaturated clay under passive confining pressure condition[J]. Journal of Vibration and Shock, 2024, 43(17): 27-33

参考文献

[1] Wang W, Chen JJ, Wang JH. Estimation method for ground deformation of granular soils caused by dynamic compaction[J]. Soil Dynamics and Earthquake Engineering, 2017, 92:266-278. [2] 刘彦, 黄风雷, 张振宇. 土壤覆层对混凝土中爆炸毁伤破坏的影响[J]. 北京理工大学学报, 2007, (09):765-768. Liu Yan, Huang Feng-lei, Zhang Zhen-yu. Influence of soil cladding on explosion in concrete[J]. Transactions of Beijing Institute of Technology, 2007, (09):765-768. [3] 孙金山, 谢先启, 贾永胜, 等. 建(构)筑物拆除爆破塌落触地振动预测模型研究[J]. 工程爆破, 2014, 20(2):25-28. Sun Jin-shan, Xie Xian-qi, Jia Yong-sheng, et al. Forecast model of peak vibration velocity induced by the collapse of structures in demolition blasting projects[J]. Engineering Blasting, 2014, 20(2):25-28. [4] Chen W, Song B, Frew DJ, et al. Dynamic small strain measurements of a metal specimen with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2003, 43(1):20-23. [5] Bischoff PH, Perry SH. Compressive behaviour of concrete at high strain rates[J]. Materials and Structures, 1991, 24(6):425-450. [6] Liang CY, Zhang QB, Li X, et al. The effect of specimen shape and strain rate on uniaxial compressive behavior of rock material[J]. Bulletin of Engineering Geology and the Environment, 2015, 75(4):1-13. [7] Ravichandran G, Subhash G. Critical Appraisal of Limiting Strain Rates for Compression Testing of Ceramics in a Split Hopkinson Pressure Bar[J]. Journal of the American Ceramic Society, 2010, 77(1):263-267. [8] Frew DJ, Forrestal MJ, Chen W. Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2005, 45(2):186-195. [9] Bragov AM, Kotov VL, Lomunov AK, et al. Measurement of the Dynamic Characteristics of Soft Soils Using the Kolsky Method[J]. Journal of Applied Mechanics and Technical Physics, 2004, 45(4):580-585. [10] Chen W, Lu F, Frew DJ, et al. Dynamic Compression Testing of Soft Materials[J]. Journal of Applied Mechanics, 2002, 69(3):214-223. [11] Chen W, Lu F, Zhou B. A quartz-crystal-embedded split Hopkinson pressure bar for soft materials[J]. Experimental Mechanics, 2000, 40(1):1-6. [12] Song B, Chen W, Luk V. Impact compressive response of dry sand[J]. Mechanics of Materials, 2009, 41(6):777-785. [13] Martin BE, Chen W, Song B, et al. Moisture effects on high strain-rate behavior of sand[J]. Mechanics of Materials, 2009, 41(6):786-798. [14] Farr JV, Woods RD. A device for evaluating one-dimensional compressive loading rate effects[J]. Geotechnical Testing Journal, 1988, 11(4): 269-275. [15] Kabir ME. Dynamic behavior of granular materials[D]. Purdue University, 2010. [16] Kabir ME, Song B, Martin BE, et al. Compressive behavior of fine sand[R]. Terminal Ballistics Technology Department, Sandia Laboratories, New Mexico, 2010. [17] Felice CW. The response of soils to impulse loads using the split-hopkinson pressure bar technique[D]. University of Utah, 1985. [18] Felice CW, Gaffney ES, Brown JA, et al. Dynamic high stress experiments on soil[J]. Geotechnical Testing Journal, 1987, 10(4):192-202. [19] Bragov AM, Grushevsky GM, Lomunov AK. Use of the Kolsky method for confined tests of soft soils[J]. Experimental Mechanics, 1996, 36(3): 237–242. [20] 朱志武, 宁建国, 刘煦. 冲击载荷下土的动态力学性能研究[J]. 高压物理学报, 2011, 25(5):444-450. Zhu Zhi-wu, Ning Jian-guo, Liu Xu. Research of Soil Dynamic Properties Subjected to Impact Load[J]. Chinese Journal of High Pressure Physics, 2011, 25(5):444-450. [21] 刘俊新, 陈忠富, 徐伟芳, 等. 压实度和含水率对压实黏性土动态力学性能的影响试验研究[J]. 岩土力学, 2012, 33(6):1631-1639. Liu Jun-xin, Chen Zhong-fu, Xu Wei-fang, et al. Experimental Study on Dynamic Mechanical Properties of Compacted Clay under Different Compaction Degrees and Water Contents[J]. Rock and Soil Mechanics, 2012, 33(6):1631-1639. [22] 丁育青, 汤文辉, 徐鑫, 等. 含水率对非饱和黏土动态压缩特性的影响[J]. 爆炸与冲击, 2013, 33(6):625-630. Ding Yu-qing, Tang Wen-hui, Xu Xin, et al. Experimental study of moisture effects on dynamic compression properties of unsaturated clay[J]. Explosion and shock, 2013, 33(6):625-630. [23] Luo H, Hu Z, Xu T, et al. High-Strain Rate Compressive Behavior of a “Natural Soil” Under Uniaxial Strain State[C]. Conference Proceedings of the Society for Experimental Mechanics Series, Springer, Cham, 2017. [24] Yang R, Chen J, Yang L, et al. An experimental study of high strain-rate properties of clay under high consolidation stress[J]. Soil Dynamics and Earthquake Engineering, 2017, 92:46-51.

PDF(2722 KB)

Accesses

Citation

Detail

段落导航
相关文章

/