基于改进MFO优化空间谱的埋地管道泄漏定位

谢晓贤1, 薛生1, 2, 郑晓亮3, 王强3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (17) : 278-288.

PDF(3642 KB)
PDF(3642 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (17) : 278-288.
论文

基于改进MFO优化空间谱的埋地管道泄漏定位

  • 谢晓贤1,薛生1,2,郑晓亮3,王强3
作者信息 +

Leakage localization of buried pipeline based on improved MFO optimized spatial spectrum

  • XIE Xiaoxian1, XUE Sheng1,2, ZHENG Xiaoliang3, WANG Qiang3
Author information +
文章历史 +

摘要

现有管道泄漏声波定位法仅能提供泄漏所在区域。为实现区域内地下泄漏源的精确定位,基于地面均匀圆形阵列(Uniform Circular Array, UCA),提出选择性反向学习飞蛾火焰优化(Selective Opposition based Moth-Flame Optimization, SOMFO)结合双波谱的埋地管道泄漏定位方法。针对土壤P1波和S波共存且波速不明确等问题,构造地面UCA的双波谱函数,以其最大输出为优化目标,使用SOMFO寻优双波速度及泄漏源三维坐标共5个参数,并设计了多孔泄漏定位策略。搭建了埋地管道泄漏实验装置,通过互谱解卷绕相位的直线特性验证了P1波和S波的存在。实验结果表明,基于SOMFO优化双波谱的定位方法可准确估计波速及三维坐标,定位误差最大为0.066 m。此外,研究了多孔泄漏及寻优算法对定位精度的影响。与现有两种精确定位方法相比,新方法对单孔泄漏的定位精度分别提升9.68%和24.32%,多孔泄漏分别提升49.17%和61.15%。

Abstract

The existing acoustic-based pipe leak localization methods can only provide the region of leak. To accurately locate the underground leak in the leak region, based on the Uniform Circular Array (UCA) mounted on the ground, a localization method using Selective Opposition based Moth-Flame Optimization (SOMFO) and dual-wave spectrum was proposed. To address the issue of the presence of P1 and S waves in soils and the issue of indetermined velocities, the dual-wave spectrum function of the ground-mounted UCA was constructed and its maximum output was considered as the goal to optimize the five parameters, including the dual wave velocities and 3D coordinates of the leak, using SOMFO. The strategy for locating multiple leaks was also proposed. The experimental rig for buried pipe leak detection was built and the presence of P1 and S waves was proved using the straight-line behavior of the unwrapped phase of cross power spectrum. The results of localization tests indicate that the localization method based on SOMFO optimizing dual-wave spectrum can accurately estimate the velocities and 3D coordinates, with a maximum error of 0.066 m. Moreover, the influence of multi-leaks, and optimization algorithms on localization accuracy was analyzed. Compared with the two methods for precise localization, accuracy of the new method for locating single leak was improved by 9.68% and 24.32%, while that for multiple leaks was improved by 49.17% and 61.15%, respectively.

关键词

埋地管道泄漏 / 双波谱 / 反向学习 / 飞蛾火焰优化 / 多孔泄漏定位

Key words

buried pipe leak / dual-wave spectrum / opposition-based learning / MFO / multi-leaks localization

引用本文

导出引用
谢晓贤1, 薛生1, 2, 郑晓亮3, 王强3. 基于改进MFO优化空间谱的埋地管道泄漏定位[J]. 振动与冲击, 2024, 43(17): 278-288
XIE Xiaoxian1, XUE Sheng1, 2, ZHENG Xiaoliang3, WANG Qiang3. Leakage localization of buried pipeline based on improved MFO optimized spatial spectrum[J]. Journal of Vibration and Shock, 2024, 43(17): 278-288

参考文献

[1] Meribout M, Khezzar L, Azzi A, et al. Leak detection systems in oil and gas fields: Present trends and future prospects [J]. Flow Measurement and Instrumentation, 2020, 75: 101772.
[2] Hu Z Y, Tariq S, Zayed T. A comprehensive review of acoustic based leak localization method in pressurized pipelines [J]. Mechanical Systems and Signal Processing, 2021, 161: 107994.
[3] Gao Y, Liu Y Y, Ma Y F, et al. Application of the differentiation process into the correlation-based leak detection in urban pipeline networks [J]. Mechanical Systems and Signal Processing, 2018, 112: 251-264.
[4] Scussel O, Brennan M J, Almeida F C L, et al. Estimating the spectrum of leak noise in buried plastic water distribution pipes using acoustic or vibration measurements remote from the leak [J]. Mechanical Systems and Signal Processing, 2021, 147: 107059.
[5] Zheng X L, Wang Q, Xue S, et al. A beamforming-based joint estimation method for gas pipeline leak localization [J]. Measurement, 2021, 177: 109264.
[6] 高琳, 曹建国. 基于输气管道泄漏声发射信号特征的小波基构造研究[J]. 振动与冲击, 2023, 42(10): 128-135.
GAO Lin, CAO Jian-guo. Research on wavelet basis construction based on the characteristicsof acoustic emission signals in gas pipe leakage [J]. Journal of Vibration and Shock, 2023, 42(10): 128-135.
[7] 韩文翔, 章兰珠. 基于时差定位法的管道多点泄漏定位研究[J]. 振动与冲击, 2022, 41(24): 210-217.
HAN Wen-xiang, ZHANG Lan-zhu. Research on pipeline multi-point leakage location based on the time difference location method [J]. Journal of Vibration and Shock, 2022, 41(24): 210-217.
[8] Almeida F C L, Brennan M J, Joseph P F, et al. Towards an in-situ measurement of wave velocity in buried plastic water distribution pipes for the purposes of leak location [J]. Journal of Sound and Vibration, 2015, 359: 40-55.
[9] Gao Y, Muggleton J M, Liu Y, et al. An analytical model of ground surface vibration due to axisymmetric wave motion in buried fluid-filled pipes [J]. Journal of Sound and Vibration, 2017, 395: 142-159.
[10] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency range [J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168-178.
[11] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. higher frequency range [J]. The Journal of the Acoustical Society of America, 1956, 28(2): 179-191.
[12] Santos J E, Corbero J M, Jr J D. Static and dynamic behavior of a porous solid saturated by a two-phase fluid [J]. The Journal of the Acoustical Society of America, 1990, 87(4): 1428-1438.
[13] 丁卫, 吴文雯, 王驰, 等. 用非饱和三相孔弹模型研究浅层土壤中地震波的传播特性[J]. 物理学报, 2014, 63(22): 204-212.
DING Wei, WU Wen-wen, WANG Chi, et al. Propagation characteristics of seismic waves in shallowsoil with the unsaturated three-phase poroelastic mode [J]. Acta Physica Sinica, 2014, 63(22): 204-212.
[14] Dey A, Nandi A, Basu B. Gold-MUSIC based DOA estimation using ULA antenna of DS-CDMA sources [J]. Aeu-international Journal of Electronics and Communications, 2018, 84: 162-170.
[15] Xiao M L, Duan Z B, Yang Z L. A weighted forward-backward spatial smoothing DOA estimation algorithm based on TLS-ESPRIT [J]. Ieice Transactions on Information and Systems, 2021, E104d(6): 881-884.
[16] Yang J, Yang Y X, Lu J Y, et al. Iterative methods for DOA estimation of correlated sources in spatially colored noise fields [J]. Signal Processing, 2021, 185: 108100.
[17] 李蜀丰, 徐永绍, 刘秉政, 等. 基于改进MUSIC的声源定位方法[J]. 电子测量与仪器学报, 2021, 35(08): 212-219.
LI Shu-feng, XU Yong-shao, LIU Bing-zheng, et al. Sound source localization method based on improved MUSIC [J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(08): 212-219.
[18] Zhang X, Lv W, Shi Y, et al. A novel DOA estimation algorithm based on eigen space [C]// Proceedings of IEEE 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Vol. Ⅰ. Institute of Electrical and Electronics Engineers, 2007: 592-595.
[19] 王强, 薛生, 郑晓亮, 等. 埋地管道泄漏三维坐标-波速联合估计方法[J]. 仪器仪表学报, 2023, 44(03): 69-79.
WANG Qiang, XUE Sheng, ZHENG Xiao-liang, et al. A joint 3D coordinate and wave -speed estimation method for the buried pipe leak localization [J]. Chinese Journal of Scientific Instrument, 2023, 44(03): 69-79.
[20] Tabassum MF, Saeed M, Akgül A, et al. Solution of chemical dynamic optimization systems using novel differential gradient evolution algorithm [J]. Physica Scripta, 2021, 96(3): 035212.
[21] 冯舒. 基于蝙蝠优化算法的阵列信号DOA估计方法研究[D]. 吉林大学, 2016.
FENG Shu. Array signal DOA estimation methods based on the bat optimization algorithm [D]. Jilin University, 2016.
[22] 邵元, 杨超, 郭辉. 基于鸡群算法的近场声源三维定位MUSIC算法[J]. 声学技术, 2020, 39(5): 638-643.
SHAO Yuan, YANG Chao, GUO Hui. Chicken swarm optimization based MUSIC algorithm for three-dimensional localization of near-field sound source [J]. Technical Acoustics, 2020, 39(5): 638-643.
[23] 郑晓亮, 谢晓贤, 王强. 基于灰狼优化的埋地管道泄漏双波谱定位方法[J]. 仪器仪表学报, 2022, 43(08): 204-214.
ZHENG Xiao-liang, XIE Xiao-xian, WANG Qiang. Grey wolf optimization based buried leak localization using dual-wave spectrum [J]. Chinese Journal of Scientific Instrument, 2022, 43(08): 204-214.
[24] Mirjalili S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm [J]. Knowledge-based Systems, 2015, 89: 228-249.
[25] 张文耀. 用斯皮尔曼系数衡量网络的度相关[D]. 中国科学技术大学, 2016. 
ZHANG Wen-yao. Using Spearman's coefficient to measure the degree correlation of the network [D]. University of Science and Technology of China, 2016.
[26] Dhargupta S, Ghosh M, Mirjalili S, et. al. Selective opposition based grey wolf optimization [J]. Expert Systems with Applications, 2020, 151: 113389.
[27] 陈阳, 田波, 王春阳, 等. 基于MVDR波束形成的FDA平台外干扰抑制[J]. 系统工程与电子技术, 2023, 45(01): 32-40.
CHEN Yang, TIAN Bo, WANG Chun-yang, et al. FDA platform external interference suppression based on MVDR beamforming [J]. Systems Engineering and Electronics, 2023, 45(01): 32-40.
[28] 王强, 薛生, 郑晓亮, 等. 基于CFD-DEM耦合的埋地输气管道泄漏声场分析[J]. 振动与冲击, 2023, 42(18): 321-331.
WANG Qiang, XUE Sheng, ZHENG Xiao-liang, et al. Analysis of the acoustic field induced by buried gas pipe leakage using the coupled method of CFD-DEM [J]. Journal of Vibration and Shock, 2023, 42(18): 321-331.
[29] Mirjalili S, Mirjalili S M, Lemis A. Grey wolf optimizer [J]. Advances in Engineering Software, 2014, 69: 46-61.
[30] Blackwell T, Kennedy J. Impact of communication topology in particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2019, 4: 689-702.
[31] Li L, Wei X Y, Li B, et,al. A survey on firefly algorithms [J]. Neurocomputing, 2022, 500: 662-678.
[32] Li J C, Li L. A hybrid genetic algorithm based on information entropy and game theory [J]. IEEE Access, 2020, 8: 36602-36611.
[33] Almeida F C L, Bernnan M J, Joseph P F, et al. The effects of resonances on time delay estimation for water leak detection in plastic pipes [J]. Journal of Sound and Vibration, 2018, 420: 315-329.

PDF(3642 KB)

Accesses

Citation

Detail

段落导航
相关文章

/