铆接机器人位置和压铆力自适应模糊滑模阻抗控制

焦建军 1, 2, 李宗刚 1, 2, 康会峰 3, 陈引娟 1, 2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (17) : 300-312.

PDF(4122 KB)
PDF(4122 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (17) : 300-312.
论文

铆接机器人位置和压铆力自适应模糊滑模阻抗控制

  • 焦建军 1,2,李宗刚 1,2,康会峰 3,陈引娟 1,2
作者信息 +

Adaptive fuzzy sliding mode impedance control for position and riveting force of riveting robot

  • JIAO Jianjun1,2, LI Zonggang1,2, KANG Huifeng3, CHEN Yinjuan1,2
Author information +
文章历史 +

摘要

针对机器人铆接小尺寸、低刚度铆钉过程中对准精度要求高、作业行程小和冲击力大等问题,提出了一种结合自适应模糊滑模控制和模糊阻抗控制的机器人铆接控制方法。为此,将机器人铆接控制过程分为接近对准与压铆两个阶段。其中,为了实现快速接近铆钉顶部以及铆接头与铆钉轴线的精确对准,设计了以双曲正切函数为切换函数的模糊自适应滑模控制器,使得切换过程更加光滑、滑模增益自适应调节,从而降低了系统的抖振,实现了运动的快速性和准确性;针对压铆阶段作业行程小、冲击力大的特点,设计了以接触力误差和力增量为输入的阻尼调整模糊控制器,减少了阻尼参数在阻抗控制过程中产生的振荡,避免了过度力加载导致的铆钉损坏或铆接失败。仿真及试验结果表明,所给出的控制方法位置精度在0.3mm以内,力接触具有更好的稳定性、实时性和快速性,能够满足铆接工艺规范要求,对于铆接机器人的高精度作业具有借鉴意义。

Abstract

This study proposes a novel control approach for robotic riveting to address challenges related to alignment accuracy, limited workspace, and significant impact force when riveting small-sized and low-stiffness rivets using robots. The approach integrates adaptive fuzzy sliding mode control and fuzzy impedance control, dividing the riveting process into two stages: alignment approach and riveting. For rapid and precise alignment, a fuzzy adaptive sliding mode controller with a hyperbolic tangent switching function is designed, ensuring smoother switching, adaptive sliding gain adjustment, and reduced system oscillation to achieve fast and accurate motion. In the riveting stage, a damping-adjusting fuzzy controller is employed to handle limited workspace and high impact force, using contact force error and force increment as inputs to reduce oscillations caused by impedance control and prevent rivet damage or failure due to excessive force loading. Simulation and experimental results demonstrate position accuracy within 0.3mm and improved stability, real-time response, and fast force contact, meeting the requirements of riveting process specifications. This approach holds significant implications for high-precision riveting operations with robots. 

关键词

铆接机器人 / 轨迹跟踪 / 滑模控制 / 模糊控制 / 阻抗控制 / 位置与力控制

Key words

riveting robot / trajectory tracking / sliding mode control / fuzzy control / impedance control / position and force control

引用本文

导出引用
焦建军 1, 2, 李宗刚 1, 2, 康会峰 3, 陈引娟 1, 2. 铆接机器人位置和压铆力自适应模糊滑模阻抗控制[J]. 振动与冲击, 2024, 43(17): 300-312
JIAO Jianjun1, 2, LI Zonggang1, 2, KANG Huifeng3, CHEN Yinjuan1, 2. Adaptive fuzzy sliding mode impedance control for position and riveting force of riveting robot[J]. Journal of Vibration and Shock, 2024, 43(17): 300-312

参考文献

[1]  Sartisson V, Meschut G. Self-locking self-pierce riveting: a new self-pierce riveting technology for multi-material applications in lightweight car body structures[J]. Welding in the World, 2017, 61(5): 1049-1056.
[2]  Vi L T, Bangaru S S, Aghazadeh F, et al. Effect of riveting tools on riveters' vibration exposure and muscle fatigue[J]. International Journal of Industrial Ergonomics, 2022, 92: 103341.
[3]  Cheng L, Huan H, Ke Y. Elastic-plastic analysis and riveting energy control for dual-robot pneumatic riveting system[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(9): 1836-1847.
[4]  Liu Y, Tang Q, Tian X-C, et al. Flexible servo riveting system control strategy based on the RBF network and self-pierce riveting process[J]. Advances in Manufacturing, 2023, 11(1): 39-55.
[5]  胡河宇, 曹建福, 曹晔, 等. 建筑幕墙安装机器人的位置/力混合控制方法[J]. 西安交通大学学报, 2022, 56(01): 51-60.
HU He yu, CAO Jianfu, CAO ye, et al. Hybrid position/force control method for building curtain wall installation robot[J]. Journal of Xi'an Jiaotong University, 2022, 56(01): 51-60.
[6] Xu Bingjie, Ji Shuai, Zhang Chengrui, et al. Linear- extended-state-observer-based prescribed performance control for trajectory tracking of a robotic manipulator[J]. Industrial Robot: the international journal of robotics research and application, 2021, 48(4): 544-555.
[7] 陈琦,王旭刚.非奇异快速终端滑模及动态面控制的轨迹跟踪制导律[J].国防科技大学学报,2020,42(01):91-100.
CHEN Qi,WANG Xugang. Trajectory tracking using nonsingular fast terminal sliding mode control and dynamic surface control[J]. Journal Of National University of Defense Technolgy,2020,42(01):91-100.
[8] Jia Q, Yuan B, Chen G, et al. Adaptive fuzzy terminal sliding mode control for the free-floating space manipulator with free-swinging  joint failure[J]. Chinese Journal of Aeronautics, 2021, 34(9): 178-198.
[9] Ferrara A, Incremona G P, Sangiovanni B. Tracking control via switched Integral Sliding Mode with application to robot manipulators[J]. Control Engineering Practice, 2019, 90: 257-266.
[10] Sun Y, Kuang J, Gao Y, et al. Fixed-time prescribed performance tracking control for manipulators against input saturation[J]. Nonlinear Dynamics, 2023, 111(15): 14077-14095.
[11] 张攀, 石照耀, 林家春, 等. 基于双曲正切函数的改进型永磁同步电机无感矢量控制系统[J]. 哈尔滨工程大学学报, 2021, 42(05): 710-718.
ZHANG Pan, SHI Zhaoyao, LIN Jiachun, et al. Improved sensor less vector control system for permanent magnet synchronous motors based on hyperbolic tangent functions[J]. Journal of Harbin Engineering University,2021,42 (05):710-718. 
[12] Rebouças Filho P P, P. Da Silva S P, Praxedes V N, et al. Control of singularity trajectory tracking for robotic manipulator by genetic algorithms[J]. Journal of Computational Science, 2019, 30: 55-64.
[13]Zhao Y M, Lin Y, Xi F, et al. Switch-based sliding mode control for position-based visual servoing of robotic riveting system[J]. Journal of Manufacturing Science and Engineering, 2017, 139(4): 041010.
[14] 孟祥冬, 何玉庆, 韩建达. 接触作业型飞行机械臂系统的力/位置混合控制[J]. 机器人, 2020, 42(02): 167-178.
MENG Xiangdong, HE Yuqing, HAN Jianda. Hybrid Force/Position Control of Aerial Manipulators in Contact Operation[J]. ROBOT, 2020, 42 (02):167-178.
[15] 陈盛, 邰春, 徐国政, 等. 基于分数阶阻抗控制的7自由度机器人辅助主动康复训练方法[J]. 仪器仪表学报, 2020, 41(09): 196-205.
CHEN Sheng, TAI Chun, XU Guozheng, et al. 7-DOF robot-assisted active rehabilitation training method based on fractional impedane control[J]. Chinese Journal of Scientific Instrument, 2020,41 (09): 196-205.
[16] Kumar N, Rani M. A new hybrid force/position control approach for time-varying constrained reconfigurable manipulators[J]. ISA Transactions, 2021, 110: 138-147.
[17] 许家忠, 陈继元, 黄成. 筒类舱段主动柔顺对接策略[J]. 电机与控制学报, 2021, 25(09): 140-146.
XU Jiazhong, CHEN Jiyuan, HUANG Cheng. Active compliant docking stategy for barrel-type cabins[J]. Electric Machines and Control, 2021,25 (09): 140-146.
[18] 张建军, 吴中华, 刘群坡, 等. 主从机械手遥操作双边自适应阻抗控制策略[J]. 上海交通大学学报, 2020, 54(06): 615-623.]
ZHANG Jianjun, WU Zhonghua, LIU Qunpo, et al. Bilateral adaptive impedance control strategy for master-slave manipulator teleoperation[J]. Journal of Shanghai Jiaotong University, 2020, 54(06): 615-623.
[19] 张国龙,杨桂林,邓益民等.三平动力控末端执行器鲁棒自适应力跟踪导纳控制方法[J].机械工程学报,2023,59(01):71-81.
ZHANG Guolong, YANG Guilin, DENG Yimin, et al. Robust Adaptive Force Tracking Admittance Control for 3-DOF Translational Force-controlled End-effector[J]. Journal of Mechanical Engineering,2023,59(01):71-81.
[20] Chen C-Y, Dai J, Yang G, et al. Sensor-based force decouple controller design of macro–mini manipulator[J]. Robotics and Computer-Integrated Manufacturing, 2023, 79: 102415.
[21] 汤奇荣,王文瑞,张崇峰等.机械臂与环境交互的位置/力切换抑制振动方法[J].振动.测试与诊断,2023,43(03):419-426+615.
TANG Qirong, WANG Wenrui, ZHANG Chongfeng, et al. Method for Suppressing Vibration During the Position/Force Switching of the Interaction Between a Robotic Arm and the Environment[J].Journal of Vibratio Measurement & Diagnosis, 2023,43(03):419-426+615.
[22] Shuzhi S G, Hang C C, Woon L C. Adaptive neural network control of robot manipulators in task space[J]. IEEE Transactions on Industrial Electronics, 1997, 44(6): 746-752.
[23] Ioannou P A, Sun J. Robust Adaptive Control[M]. PTR Prentice-Hall,1996:75-76.
[24] 焦俊, 孔文, 王强, 等. 基于输入模糊化的农用履带机器人自适应滑模控制[J]. 农业机械学报, 2015, 46(06): 14-19+13.
JIAO Jun, KONG Wen, WANG Qiang, et al. Adaptive sliding mode control of agricultural tracked robots based on input fuzzification[J]. Journal of Agricultural Machinery, 2015,46(06): 14-19+13.
[25] 姜力,蔡鹤皋,刘宏.基于滑模位置控制的机器人灵巧手模糊自适应阻抗控制[J].控制与决策,2001,(05):612-616.
JIANG Li, CAI Hegao, LIU Hong. Fuzzy Adaptive Impedance Control of Dextrous Robot Hand Based on Sliding Mode Position Control[J].Control and decision,2001,(05):612-616.

PDF(4122 KB)

427

Accesses

0

Citation

Detail

段落导航
相关文章

/