液力式惯容器管道阻尼设计研究

李鑫, 刘骁夫, 李华春

振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 106-112.

PDF(2152 KB)
PDF(2152 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 106-112.
论文

液力式惯容器管道阻尼设计研究

  • 李鑫,刘骁夫,李华春
作者信息 +

Tube damping design for fluid-based inerters

  • LI Xin,LIU Xiaofu,LI Huachun
Author information +
文章历史 +

摘要

针对液力式惯容器相互耦合的惯容管道阻尼、惯容量和有效刚度等特性极大限制了其振动控制范围的问题,提出了一种全新蜿蜒式布局的惯容管道。基于液力式惯容器的工作机理,利用机械与液压网络类比法建立了蜿蜒式管道对应阻尼的数学模型,仿真验证了在惯容量和有效刚度恒定时,通过调节蜿蜒式管道的关键设计参数可实现一定程度的管道阻尼独立调节。此外,研制了蜿蜒式管道的液力式惯容器原型样机,试验验证了蜿蜒式管道阻尼的模型正确性以及原型样机的性能准确性。结果表明,蜿蜒式管道设计实现了管道阻尼与惯容量、有效刚度的物理解耦,拓宽了液力式惯容器的振动控制范围,为同类液力式减振设备的研发提供了一种切实可行的阻尼设计新思路。

Abstract

Aiming at the problem of limited vibration control range due to the mutual coupling of damping, inertance, and stiffness,a fluid-based inerter with meandering-tube layout is proposed. Based on the working mechanism of fluid-based inerters, a mathematical model for the damping of the meandering-tube is established using the analogy method between mechanical and hydraulic networks. Simulation verifies that independent damping adjustment of the tube can be achieved by adjusting key design parameters of the meandering tube while maintaining constant inertance and stiffness. Additionally, a prototype of the fluid-based inerter was developed and its mechanical properties were tested. The results indicate that the proposed meandering-tube design accomplish the physical decoupling of damping, inertance, and stiffness, thereby expanding the vibration control range of fluid-based inerters. This offers a new and practical approach to damping design for the development of similar fluid-based vibration damping equipment.

关键词

液力式惯容器 / 管道阻尼 / 液压结构设计 / 振动控制 / 动力学测试

Key words

fluid-based inerters / tube damping / hydraulic structural design / vibration control / dynamics testing

引用本文

导出引用
李鑫, 刘骁夫, 李华春. 液力式惯容器管道阻尼设计研究[J]. 振动与冲击, 2024, 43(18): 106-112
LI Xin, LIU Xiaofu, LI Huachun. Tube damping design for fluid-based inerters[J]. Journal of Vibration and Shock, 2024, 43(18): 106-112

参考文献

[1] Smith M C. Synthesis of mechanical networks: the inerter[J]. IEEE Transactions on Automatic Control, 2002, 47(10): 1648-1662.
[2] Chen P C, Chen P C, Ting G C. Seismic response mitigation of buildings with an active inerter damper system[J]. Structural Control and Health Monitoring, 2022, 29(8): e2975.
[3] 刘志彬,谭平,王菁菁,等. 新型非对称惯容NES减震控制性能研究[J]. 振动与冲击,2023,42(2):116-125. 
LIU Zhibin, TAN Ping, WANG Jingjing, et al. Performance analysis of a novel asymmetric inerter NES for seismic response mitigation[J]. Journal of Vibration and Shock, 2023,42(2):116-125.
[4] Yang L, Wang R, Ding R, et al. Investigation on the dynamic performance of a new semi-active hydro-pneumatic inerter-based suspension system with MPC control strategy[J]. Mechanical Systems and Signal Processing, 2021, 154: 107569.
[5] 杨艺,陈龙,汪若尘,等. 车辆半主动悬架广义天棚理论控制研究[J]. 振动与冲击,2021,40(22):66-74. 
YANG Yi, CHEN Long, WANG Ruochen, et al. Semi-active suspension control based on the general theory of skyhook control[J]. Journal of Vibration and Shock, 2021,40(22):66-74.
[6] Jiang J Z, Matamoros-Sanchez A Z, Zolotas A, et al. Passive suspensions for ride quality improvement of two-axle railway vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2015, 229(3): 315-329.
[7] Lewis T D , Jiang J Z , Neild S A ,et al. Using an inerter-based suspension to improve both passenger comfort and track wear in railway vehicles[J]. Vehicle System Dynamics, 2019:1-22.
[8] Liu X, Jiang J Z, Titurus B, et al. Model identification methodology for fluid-based inerters[J]. Mechanical Systems and Signal Processing, 2018, 106: 479-494.
[9] 王乐,毛明,雷强顺,等. 液力惯容器特性研究[J]. 振动与冲击,2018,37(8):146-152.
WANG Le, MAO Ming, LEI Qiangshun, et al. Modeling and testing for a hydraulic inerter[J]. Journal of Vibration and Shock, 2018,37(8):146-152.
[10] Matsuoka T, Hiramoto K, Sunakoda K, et al. Fluid inertia damper using MR fluid with a long spiral bypass pipe[J]. Mechanical Engineering Journal, 2016, 3(2): 15-00731-15-00731.
[11] Du F, Wang C, Nie W. Modeling and Experimental Study of the Dual Cylinder Fluid Inerter[J]. Applied Sciences, 2022, 12(21): 10849.
[12] Shen Y, Chen L, Liu Y, et al. Influence of fluid inerter nonlinearities on vehicle suspension performance[J]. Advances in Mechanical Engineering, 2017, 9(11): 1687814017737257.
[13] Sarkar S, Fitzgerald B. Fluid inerter for optimal vibration control of floating offshore wind turbine towers[J]. Engineering Structures, 2022, 266: 114558.
[14] Liu X, Titurus B, Jiang J Z. Generalisable model development for fluid-inerter integrated damping devices[J]. Mechanism and Machine Theory, 2019, 137: 1-22.
[15] Guillemin E A. A summary of modern methods of network synthesis[M].Advances in Electronics and Electron Physics, 1951, 3: 261-303.
[16] Jiang J Z, Smith M C. Regular positive-real functions and five-element network synthesis for electrical and mechanical networks[J]. IEEE Transactions on Automatic Control, 2010, 56(6): 1275-1290.
[17] Rennels D C. Pipe flow: A practical and comprehensive guide [M]. John Wiley & Sons, 2012.
[18] Ali S. Pressure Drop Correlations for Flow Through Regular Helical Coils[J]. Fluid Dynamics Research, 2001, 28(4):295–310.
[19] Merritt H E. Hydraulic Control Systems[M]. John Wiley & Sons, New York, 1967.

PDF(2152 KB)

Accesses

Citation

Detail

段落导航
相关文章

/