周期格栅声学黑洞减振性能研究

宋春生1, 2, 尹睿1, 韩雨润1, 徐龙1, 江友亮1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 155-164.

PDF(2515 KB)
PDF(2515 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 155-164.
论文

周期格栅声学黑洞减振性能研究

  • 宋春生1,2,尹睿1,韩雨润1,徐龙1,江友亮1
作者信息 +

Vibration reduction performance of periodic grid acoustic black holes

  • SONG Chunsheng1,2,YIN Rui1,HAN Yurun1,XU Long1,JIANG Youliang1
Author information +
文章历史 +

摘要

针对弯曲波减振,本文提出了一种周期格栅声学黑洞结构,首先建立了有限元分析模型,然后通过实能带、复能带方法分析了带隙特性和宽频减振性能,并通过振动传递分析验证了能带分析的结果,最后提出以第一带隙范围和带隙外平均衰减因子作为结构的减振性能指标,研究声学黑洞特征参数的影响规律。研究结果显示:周期格栅声学黑洞同时具有全方向带隙特性和宽频减振性能,较低频段的减振由周期结构的带隙特性主导,较高频段的减振由声学黑洞的宽频减振性能主导;在5×5的有限周期结构中,周期格栅声学黑洞相比普通格栅在213~513Hz处存在低频带隙,低频带隙外相比普通格栅振动平均减小9.5dB;其他参数不变的情况下,增加声学黑洞长度、指数,减少残余厚度,有利提升结构的减振性能。

Abstract

Aiming at the vibration reduction of bending wave, a structure of periodic grid acoustic black holes is proposed in this paper. Firstly, the finite element analysis model is established. Then, the band gap characteristics and broadband vibration reduction performance are analyzed by real band and complex band methods. The conclusion of band analysis is verified by vibration transmission. Finally, the first band gap range and the average attenuation factor outside the band gap are proposed as the vibration reduction performance index of the structure, and the influence law of the characteristic parameters of the acoustic black hole is studied. The results show that the periodic grid acoustic black holes have both omnidirectional band gap characteristics and broadband vibration reduction performance. The vibration reduction in the lower frequency band is dominated by the band gap characteristics of the periodic structure, and the vibration reduction in the higher frequency band is dominated by the broadband vibration reduction performance of the acoustic black holes. In a 5 × 5 finite periodic structure, the periodic grid acoustic black holes have a low-frequency band gap at 213 ~ 513 Hz compared with the ordinary grid, and the vibration out of the low-frequency band gap is reduced by 9.5 dB on average compared with the ordinary grid. When other parameters remain unchanged, increasing the length and index of the acoustic black hole and reducing the residual thickness are beneficial to improve the vibration reduction performance of the structure.

关键词

周期格栅 / 声学黑洞 / 全方向带隙 / 复能带  /

Key words

Periodic grid structure / Acoustic black holes / Omnidirectional band gap / Complex band

引用本文

导出引用
宋春生1, 2, 尹睿1, 韩雨润1, 徐龙1, 江友亮1. 周期格栅声学黑洞减振性能研究[J]. 振动与冲击, 2024, 43(18): 155-164
SONG Chunsheng1, 2, YIN Rui1, HAN Yurun1, XU Long1, JIANG Youliang1. Vibration reduction performance of periodic grid acoustic black holes[J]. Journal of Vibration and Shock, 2024, 43(18): 155-164

参考文献

[1] 黄薇,季宏丽,裘进浩,成利. 二维声学黑洞对弯曲波的能量聚集效应[J]. 振动与冲击, 2017, 36(9): 51-57.
HUANG Wei, JI Hongli, QIU Jinhao, CHENG Li. Energy focusing effect of Two-dimensional acoustic black hole on flexural waves. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(9): 51-57.
[2] 赵楠,王禹,陈林,庞福振. 分布式声学黑洞浮筏系统隔振性能研究[J]. 振动与冲击, 2022, 41(13): 75-80.
ZHAO Nan1, WANG Yu, CHEN Lin, PANG Fuzhen. Vibration isolation performance of distributed acoustic black hole floating raft system. JOURNAL OF VIBRATION AND SHOCK, 2022, 41(13): 75-80.
[3] 鲍岳, 刘献栋, 梁浩鸣, 等. 声学黑洞能量汇聚效应及阻尼耗能机理研究[J]. 汽车技术, 2022, (05): 1-10.
BAO Yue, LIU Xiandong, LIANG Haoming, et al. Research on Energy Convergence Effect and Damping Dissipation Mechanism of Acoustic Black Hole[J]. Automobile Technology, 2022(5): 1-10.
[4] 李敬. 周期声学黑洞结构弯曲波带隙与振动特性研究[D]. 华中科技大学, 2021.
LI Jing. Band Gap and Vibration Characteristics of Flexural Waves with Periodic Acoustic Black Hole Structure [D]. Huazhong University of Science and Technology, 2021
[5] TANG L, CHENG L. Ultrawide band gaps in beams with double-leaf acoustic black hole indentations [J]. The Journal of the Acoustical Society of America, 2017, 142(5): 2802-7.
[6] GAO N, GUO X, DENG J, et al. Elastic wave modulation of double-leaf ABH beam embedded mass oscillator [J]. Applied Acoustics, 173.
[7] GAO N, WEI Z, ZHANG R, et al. Low-frequency elastic wave attenuation in a composite acoustic black hole beam [J]. Applied Acoustics, 2019, 154(NOV.): 68-76.
[8] GAO N, WEI Z, HOU H, et al. Design and experimental investigation of V-folded beams with acoustic black hole indentations [J]. The Journal of the Acoustical Society of America, 2019, 145(1): EL79-83.
[9] GAO N, WANG B, LU K, et al. Complex band structure and evanescent Bloch wave propagation of periodic nested acoustic black hole phononic structure [J]. Applied Acoustics, 2021, 177(3).
[10] 孟繁童. 基于声学黑洞的声子晶体声波操控特性研究[D]. 重庆大学, 2019.
MENG Fantong. Research on Wave Manipulation characteristic on Phononic Crystal Based on Acoustic Black Hole [D]. Chongqing University, 2019.
[11] TANG L, CHENG L, CHEN K. Complete Sub-Wavelength Flexural Wave Band Gaps in Plates with Periodic Acoustic Black Holes [J]. Journal of Sound and Vibration, 2021, 502(3): 116102.
[12] 金星,张振华. 幂指数棱台局域共振型声子晶体板的带隙特性与减振机理研究[J]. 振动与冲击, 2023, 42(14): 107-114.
JIN Xing,ZHANG Zhenhua. Band gaps characteristics and vibration reduction mechanism of power exponential prismatic local resonance phononic crystal plates. JOURNAL OF VIBRATION AND SHOCK, 2023, 42(14): 107-114.
[13] DENG J, TANG L, GUO W. A wave and Rayleigh–Ritz method to compute complex dispersion curves in periodic lossy acoustic black holes[J].Journal of Sound and Vibration,2023,Vol.546: 117449.
[14] DENG J, XU Y, GUASCH O, et al. A two-dimensional wave and Rayleigh–Ritz method for complex dispersion in periodic arrays of circular damped acoustic black holes [J]. Mechanical Systems and Signal Processing, 2023, 200: 110507.
[15] DENG J, GUASCH O. Sound waves in continuum models of periodic sonic black holes[J].Mechanical Systems and Signal Processing,2023,Vol.205: 110853.
[16] DENG J, CHEN X, HAN B, et al. Evanescent waves in a metabeam attached with lossy acoustic black hole pillars[J].Mechanical Systems and Signal Processing,2023,Vol.191: 110182.
[17] DENG J, CHEN X.Ultrawide attenuation bands in gradient metabeams with acoustic black hole pillars[J].Thin-Walled Structures,2023,Vol.184: 110459
[18] OUDICH M, BADREDDINE ASSOUAR M. Complex band structures and evanescent Bloch waves in two-dimensional finite phononic plate [J]. Journal of Applied Physics, 2012, 112(10): 104509.
[19] ROMERO-GARC A V, GARC A-RAFFI L M, S NCHEZ-P REZ J. Evanescent waves and deaf bands in sonic crystals [J]. AIP Advances, 2011, 1.
[20] 王艳锋. 含共振单元声子晶体的带隙特性及设计 [D]. 北京交通大学, 2015. 
WANG Yanfeng. Bandgap properties and design of phononic crystals with resonant units [D]. Beijing Jiaotong University, 2015.
[21] 王建伟. 周期格栅及其夹层结构弹性波传播特性研究 [D]. 国防科学技术大学, 2017.
WANG Jianwei. The Propagation characteristics of elastic wave in Periodic Grid Structures and Grid Sandwich Structures [D]. National University of Defense Science and Technology, 2017
[22] HAN B, JI H, CHENG L, et al. Attenuation band splitting in a finite plate strip with two-dimensional acoustic black holes [J]. Journal of Sound and Vibration, 2023, 546: 117442.
[23] 齐彩卉. 声子晶体弹性波和凋落波拓扑优化设计 [D]. 大连理工大学, 2023.
QI Caihui. Topology Optimization Design of Phononic Crystals for Elastic and Evanescent Waves [D]. Dalian Univer

PDF(2515 KB)

Accesses

Citation

Detail

段落导航
相关文章

/