弦支穹顶结构阻尼器替换撑杆振动控制研究

马金凤1 , 刘铭劼1, 2, 3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 173-185.

PDF(6134 KB)
PDF(6134 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 173-185.
论文

弦支穹顶结构阻尼器替换撑杆振动控制研究

  • 马金凤1 ,刘铭劼1,2,3
作者信息 +

Performance and method of vibration control of a suspendome using dampers to replace struts

  • MA Jinfeng1,LIU Mingjie1,2,3
Author information +
文章历史 +

摘要

针对弦支穹顶结构在地震作用下的动力响应问题,提出采用粘弹性阻尼器替换弦支穹顶结构撑杆的振动控制方法,基于结构力学原理推导了弦支穹顶结构上弦节点静力位移公式,提出了粘弹性阻尼器参数刚度系数K、阻尼系数C的理论公式,借助有限元软件针对结构跨度、结构矢跨比、阻尼器参数、替换杆件类型、替换撑杆位置进行参数化分析。结果表明,替换阻尼器参数选用理论计算值的减振效果优于对照组,验证了阻尼器参数理论公式适用于弦支穹顶结构振动控制,最优替换杆件类型为结构的竖向撑杆,最优减振率可达72.46%。

Abstract

In view of the dynamic response of suspendome under earthquake, a vibration control method using viscoelastic dampers to replace the struts of suspendome is proposed. Based on the principle of structural mechanics, the static displacement formula of the top chord node of suspendome is derived. The theoretical formulas for the stiffness coefficient K and damping coefficient C of viscoelastic dampers are proposed. Parameterized analysis is conducted using finite element software for structural span, structural rise span ratio, damper parameters, replacement rod types, and replacement strut positions. The results show that the vibration reduction effect of replacing the damper parameters with theoretical calculated values is better than that of the control group. The results verify the applicability of the damper parameter theoretical formula to vibration control of suspendome. The optimal replacement member type for suspendome is strut, with an optimal vibration reduction rate of 72.46%. 

关键词

弦支穹顶 / 振动控制 / 粘弹性阻尼器 / 阻尼器参数 / 理论分析

Key words

suspendome / vibration control / viscoelastic damper / damper parameters / theoretical analysis 

引用本文

导出引用
马金凤1 , 刘铭劼1, 2, 3. 弦支穹顶结构阻尼器替换撑杆振动控制研究[J]. 振动与冲击, 2024, 43(18): 173-185
MA Jinfeng1, LIU Mingjie1, 2, 3. Performance and method of vibration control of a suspendome using dampers to replace struts[J]. Journal of Vibration and Shock, 2024, 43(18): 173-185

参考文献

[1] 陈志华, 刘红波, 牛犇. 弦支穹顶结构的工程应用[J]. 工业建筑, 2010, 40(08): 42-48.
CHEN Zhihua, LIU Hongbo, NIU Ben. Application of suspen-dome structures in engineering [J]. Industrial Construction, 2010, 40(08): 42-48.
[2] 张增军, 马人乐, 张哲. 弦支穹顶结构动力反应分析[J]. 世界地震工程, 2006, 22(04): 89-94.
ZHANG Zengjun, MA Renle, ZHANG Zhe. Dynamic analysis of suspend-dome structures [J]. World Earthquake Engineering, 2006, 22(04): 89-94.
[3] 薛素铎, 凌和海. 粘弹性阻尼器在网架结构减震控制中的优化设置[J]. 建筑结构学报, 2007, 28(04): 51-57, 75.
XUE Suduo, LING Hehai. Optimum installation of viscoelastic dampers in space frame structures [J]. Journal of Building Structures, 2007, 28(04): 51-57, 75.
[4] 汤罗生. 附设粘弹性阻尼器的网架结构抗震性能研究[D]. 成都: 西南交通大学, 2009.
TANG Luosheng. Researches on seismic performance of space gird with supplemental viscoelastic damper [D]. Chengdu: Southwest Jiaotong University, 2009.
[5] 金波, 李梓溢, 周旺, 等. 基于改进遗传算法的阻尼器位置与数量优化分析[J]. 湖南大学学报(自然科学版), 2019, 46(11): 114-121.
JIN Bo, LI Ziyi, ZHOU Wang, et al. Optimal analysis on location and quantity of dampers based on improved genetic algorithm [J]. Journal of Hunan University (Natural Sciences), 2019, 46(11): 114-121.
[6] Hyun U O, Junjiro O. An experimental study of a semiactive magneto-Rheological fluid variable damper for vibration suppression of truss structures [J]. Smart Materials and Structures, 2002, 11(01): 156-162.
[7] 贾斌, 罗晓群, 丁娟等. 粘滞阻尼器对空间桁架结构减震作用研究[J]. 振动与冲击, 2014, 33(06): 124-130.
JIA Bin, LUO Xiaoqun, DING Juan, et al. Vibration reduction of space truss structure with viscous dampers [J]. Journal of Vibration and Shock, 2014, 33(06): 124-130.
[8] Gee C K, Kang J W. 공간구조물의 지진동제어를 위한 TMD의 최적설계[J]. 한국공간구조학회지, 2011, 11(02): 81-88.
[9] 范峰, 沈世钊. 网壳结构的粘弹阻尼器减振分析[J]. 地震工程与工程振动, 2003, 23(03): 156-159.
FAN Feng, SHEN Shizhao. Vibration reducing analysis of single-layer reticulated shells with viscous-elastic dampers [J]. Earthquake Engineering and Engineering Vibration, 2003, 23(03): 156-159.
[10] 朱礼敏, 钱基宏, 张维嶽. 双层柱面网壳采用粘滞阻尼器的减震参数分析[J]. 建筑结构学报, 2007, 28(04): 58-63.
ZHU Limin, QIAN Jihong, ZHANG Weiyue. Parameter analysis of vibration reduction of double-layer cylindrical latticed shell with viscous dampers [J]. Journal of Building Structures, 2007, 28(04): 58-63.
[11] 丁阳, 葛金刚. 黏滞阻尼器在单层网壳结构中的优化布置[J]. 地震工程与工程振动, 2012, 32(04): 166-173. 
DING Yang, GE Jingang. Optimal placement of viscous dampers in single-layer reticulated shell [J]. Earthquake Engineering and Engineering Vibration, 2012, 32(04): 166-173.
[12] 韩庆华, 郭凡夫, 刘铭劼, 等. 多维减振阻尼器力学性能研究[J]. 建筑结构学报, 2019, 40(10): 69-76.
HAN Qinghua, GUO Fanfu, LIU Mingjie, et al. Research on mechanical properties of multi-dimensional vibration control damper [J]. Journal of Building Structures, 2019, 40(10): 69-76.
[13] YANG Y, MA H. Optimal topology design of replaceable bar dampers of a reticulated shell based on sensitivity analysis[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(01): 113-124.
[14] XU J, XU S C, YUAN Z H. Probabilistic seismic analysis of single-layer reticulated shell structures controlled by viscoelastic dampers with an effective placement [J]. Engineering Structures, 2020, 222: 1-15.
[15] 唐少容, 周岱, 黄真等. MR智能阻尼器对空间网壳结构的风振抑制分析[J]. 振动与冲击, 2006, 25(06): 25-28+34+176.
TANG Shaorong, ZHOU Dai, HUANG Zhen, et al. The wind-induced vibration control of spatial reticulated shell structures with MR dampers [J]. Journal of Hunan University (Natural Sciences), 2006, 25(06): 25-28+34+176.
[16] 帅虹, 黄真, 周岱. 组合算法用于空间结构振动抑制的阻尼器优化布置[J]. 振动与冲击, 2008, 27(03): 17-21+176.
SHUAI Hong, HUANG Zhen, ZHOU Dai, et al. Mixed algorithm for placement and quantity optimiztion of dampers in vibration reduction of spatial reticulated structures [J]. Journal of Hunan University (Natural Sciences), 2008, 27(03): 17-21+176.
[17] Palermo M, Silvestri S, Landi L, et al. A “direct five step procedure” for the preliminary seismic design of buildings with added viscous dampers [J]. Engineering Structures, 2018, 173: 933-950.
[18] 韩庆华, 曹馨元, 刘铭劼. 平面张弦结构粘弹性阻尼器振动控制研究[J]. 工程力学, 2021, 38(12): 57-72.
HAN Qinghua, CAO Xinyuan, LIU Mingjie. Research on the vibration control of plane string structures using viscoelastic dampers [J]. Engineering Mechanics, 2021, 38(12): 57-72.
[19] 龙驭球, 包世华, 袁驷. 结构力学Ⅰ[M]. 北京: 高等教育出版社, 2018: 141-142.
LONG Yuqiu, BAO Shihua, YUAN Si. Structural Mechanics [M]. Beijing: Higher Education Press, 2018: 141-142.
[20] 葛家琪, 张国军, 王树, 等. 2008奥运会羽毛球馆弦支穹顶结构整体稳定性能分析研究[J]. 建筑结构学报, 2007, 28(06): 22-30, 44.
GE Jiaqi, ZHANG Guojun, WANG Shu, et al. The overall stability analysis of the suspend-dome structure system of the badminton gymnasium for 2008 Olympic Games [J]. Journal of Building Structures, 2007, 28(06): 22-30, 44.
[21] 陈志华, 刘红波, 周婷. 空间钢结构APDL参数化计算与分析[M]. 北京: 中国水利水电出版社, 2013: 160-244. 
CHEN Zhihua, LIU Hongbo, ZHOU Ting. APDL parameter analysis of spatial steel structure [M]. Beijing: China Water&Power Press, 2013: 160-244.
[22] 韩庆华, 郭凡夫, 刘铭劼, 等. 单层网壳竖向激励下多维减振阻尼器布置研究[J]. 地震工程与工程振动, 2023, 43(02): 69-80.
HAN Qinghua, GUO Fanfu, LIU Mingjie, et al. Study on the layout of multi-dimensional vibration control damper in single-layer latticed shells under vertical excitation [J]. Earthquake Engineering and Engineering Vibration, 2023, 43(02): 69-80.
[23] HAN Q H, GUO F F, LIU M J, et al. Experimental study on the mechanical properties of a multi-dimensional vibration control damper[J]. Journal of Constructional Steel Research, 2022, 197: 107500.

PDF(6134 KB)

140

Accesses

0

Citation

Detail

段落导航
相关文章

/