LRS FRP加固既有人防剪力墙的抗冲击试验研究

陈文龙1, 张君博2, 梁海志1, 王阳明3, 张纪刚1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 208-219.

PDF(5197 KB)
PDF(5197 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 208-219.
论文

LRS FRP加固既有人防剪力墙的抗冲击试验研究

  • 陈文龙1,张君博2,梁海志1,王阳明3,张纪刚1
作者信息 +

Experimental study on the impact resistance of LRS FRP strengthened shear walls in the existing civil air defense engineering

  • CHEN Wenlong1,ZHANG Junbo2,LIANG Haizhi1,WANG Yangming3,ZHANG Jigang1
Author information +
文章历史 +

摘要

大应变FRP材料(Large Rupture Strain FRP)较传统FRP具有更大的断裂应变,为探究大应变FRP加固既有人防工程剪力墙的抗冲击性能,分别采用PET LRS-FRP(聚对苯二甲酸乙二醇酯FRP)和PEN LRS-FRP(聚萘二甲酸乙二醇酯FRP)加固人防工程剪力墙并开展冲击试验,与未加固的人防工程剪力墙试验与数值结果进行对比分析。结果表明,基于数值模拟所得到的破坏形态与试验现象吻合良好,均为典型的受弯破坏。相较于未加固墙,FRP能大幅提升人防工程剪力墙的极限承载力和抗弯刚度,显著降低跨中挠度。PEN FRP加固较PET FRP加固能提供更好的抗变形能力,进而减轻墙体冲击损伤,但PET FRP较PEN FRP应变范围更广,可提供更好的延性。此外,FRP加固均能显著提升剪力墙的耗能能力,其中PET FRP加固墙的耗能能力要优于PEN FRP加固墙。

Abstract

Existing shear walls of the civil air defense engineering are strengthened by the large rupture strain fiber reinforced polymer (LRS FRP), due to its excellent fracture strain performance, and the impact resistance of the strengthened walls is investigated through the impact tests. PET FRP (polyethylene terephthalate FRP) and PEN FRP (polyethylene naphthalate FRP) are adopted, and the experimental results are compared with the experimental and numerical results of the original shear wall. The obtained results indicate that the failure mode acquired by the numerical simulation is in considerable agreement with the test phenomena, which both are the bending failure modes. FRP can significantly improve the ultimate bearing resistance and bending stiffness of the shear walls, and the mid-span’s deflection response can be highly decreased. The PEN FRP reinforcement can provide much better anti-deformation capacity than that of PET FRP, thus reducing the impact damage of the shear wall. However, due to the better ductility of the PET FRP reinforcement, it has a wider application compared with the PEN FRP reinforcement. Furthermore, the energy dissipation capacity of the shear wall can be significantly improved by the FRP reinforcement, specifically, the efficiency of the PET FRP reinforcement is superior to PEN FRP.

关键词

大应变FRP / 人防工程 / 冲击试验 / 挠度分析 / 应变分析 / 能量耗散

Key words

LRS FRP / Civil air defense engineering / Impact test / Deflection response / Strain response / Energy dissipation

引用本文

导出引用
陈文龙1, 张君博2, 梁海志1, 王阳明3, 张纪刚1. LRS FRP加固既有人防剪力墙的抗冲击试验研究[J]. 振动与冲击, 2024, 43(18): 208-219
CHEN Wenlong1, ZHANG Junbo2, LIANG Haizhi1, WANG Yangming3, ZHANG Jigang1. Experimental study on the impact resistance of LRS FRP strengthened shear walls in the existing civil air defense engineering[J]. Journal of Vibration and Shock, 2024, 43(18): 208-219

参考文献

[1] 孙涛, 姚未来, 刘元雪, 等. FRP加固混凝土梁界面应力的时变规律研究[J]. 土木与环境工程学报(中英文). 2023: 1-11.
SUN Tao, YAO Weilai, LIU Yuanxue, et al. Study on time-dependent interfacial stress of FRP-Strengthened RC beam[J]. Journal of Civil and Environmental Engineering. 2023: 1-11.
[2] 彭晖, 丑佳璇, 吴攀. 端部嵌贴预应力碳纤维复材加固混凝土梁受力性能试验研究[J]. 建筑结构学报. 2023, 44(07): 152-160.
PENG Hui, CHOU Jiaxuan, WU Pan. Experimental study on mechanical behavior of prestressedcarbon fiber reinforced polymer strengthened concretebeams with near-end-enhanced-embedment[J]. Journal of Building Structures. 2023, 44(07): 152-160.
 [3] 周朝阳, 刘君, 吴中会. 混锚预应力U形碳纤维条带抗剪加固混凝土梁试验研究[J]. 土木工程学报. 2018, 51(10): 1-10.
ZHOU Chaoyang, LIU Jun, WU Zhonghui. Experimental study on shear performance of RC beams strengthened with hybrid-anchored and prestressed CFRP U-strips [J]. China Civil Engineering Journal. 2018, 51(10): 1-10.
[4] 潘晓兰, 刘笑强, 郑志. 纤维布加固填充墙钢筋混凝土框架的抗震性能水准研究[J]. 科学技术与工程. 2023, 23(24): 10459-10468.
PAN Xiaolan, LIU Xiaoqiang, ZHENG Zhi. Seismic Performance Level of Masonry-infilledRC Frames Retrofitted by FRP[J]. Science Technology and Engineering. 2023, 23(24): 10459-10468.
[5] 梅葵花, 王凤轩, 孙胜江. 纤维增强复合材料加固混凝土桥梁结构研究进展[J]. 建筑科学与工程学报. 2022: 1-17.
MEI Kuihua, WANG Fengxuan, SUN Shengjiang. Research Progress of Fiber Reinforced Polymer in Strengthening ConcreteBridge Structure[J]. Journal of Architecture and Civil Engineering. 2022: 1-17.
[6] 沈惠军, 郑和晖, 张峰, 等. 新型BFRP布加固混凝土方柱轴压性能试验研究[J]. 复合材料科学与工程. 2023(09): 106-111.
SHEN Huijun, ZHENG Hehui, ZHANG Feng, et al. Experimental study on axial compression performance ofnew-type BFRP-confined square concrete columns[J]. Composites Science and Engineering. 2023(09): 106-111.
[7] 郭樟根, 曹双寅, 王安宝, 等. 化爆作用下FRP加固RC板的试验研究及动力响应分析[J]. 工程力学. 2016, 33(03): 120-127.
GUO Zhanggen, CAO Shuangyin, WANG Anbao, et al. Dynamic response analysis and test study on frp strengthened rc slabs subjected to blast loading[J]. Engineering Mechanics. 2016, 33(03): 120-127.
[8] 何庆锋, 岳泪阳, 毛佳伟. 冲击作用下CFRP修复损伤RC叠合梁动力性能试验研究[J]. 振动与冲击. 2021, 40(04): 171-178.
HE Qingfeng, YUE Leiyang, MAO Jiawei. An experimental study on dynamic performance of CFRP-repairedRC composite beams under impact[J]. Journal of Vibration and Shock. 2021, 40(04): 171-178.
[9] 邢丽丽, 孔祥清, 韩飞, 等. AFRP加固钢筋混凝土受损梁抗剪性能试验研究[J]. 玻璃钢/复合材料. 2019(10): 76-82.
XING Lili, KONG Xiangqing, HAN Fei, et al. Experimental study on shear behaviour of reinforcedconcrete damaged beams reinforced by AFRP[J]. Composites Science and Engineering. 2019(10): 76-82.
[10] YE Yu-yi, LIANG Sheng-da, FENG Peng, et al. Recyclable LRS FRP composites for engineering structures: Current status and future opportunities[J]. Composites Part B: Engineering. 2021, 212: 108689.
[11] YAN Zhi-wei, BAI Yu-lei, OZBAKKALOGLU Togay, et al. Axial impact behavior of Large-Rupture-Strain (LRS) fiber reinforced polymer (FRP)-confined concrete cylinders[J]. Composite Structures. 2021, 276: 114563.
[12] ISLEEM Haythamf, PENG Feng, TAYEH Bassama. Confinement model for LRS FRP-confined concrete using conventional regression and artificial neural network techniques[J]. Composite Structures. 2022, 279: 114779.
[13] 郑育文, 郭永昌, 林观, 等. 大应变纤维增强复材-混凝土-高强钢组合实心圆柱轴压试验研究[J]. 工业建筑. 2019, 49(09): 40-47.
ZHENG Yuwen, GUO Yongchang, LIN Guan, et al. Behavior of Large Rupture Strain FRP-Concrete-High Strength Steel Solid Circular Columns under axial compression[J]. Industrial Construction. 2019, 49(09): 40-47.
[14] BAI Yu-lei, BAI Shang-cong, MEI Shi-jie, et al. Seismic behavior of RC square columns strengthened with LRS FRP under high axial load ratio[J]. Structures. 2023, 56: 104867.
[15] 王言磊, 陈贵鹏, 万宝林, 等. 大应变纤维增强复材约束冰短柱轴压力学性能试验研究[J]. 工业建筑. 2019, 49(09): 59-63.
WANG Yanlei, CHEN Guipeng, WAN Baolin, et al. Experimental study of axial compressive behavior of Large Rupture Strain FRP confined ice stub columns[J]. Industrial Construction. 2019, 49(09): 59-63.
[16] ZHOU Yingwu, YE Zenghui, ZHAO Debo, et al. Static and multi-impact performances of RC beams strengthened with large rupture-strain FRP composites[J]. Composite Structures. 2023, 316: 117053.
[17] MHANNA Hayah, HAWILEH Ramia, RASHED Ahmadal, et al. Performance of RC beams externally strengthened with hybrid CFRP and PET-FRP laminates[J]. Procedia Structural Integrity. 2022, 42: 1190-1197.
[18] SHI Chenglong, Zhang Junbo, Liang Haizhi, et al. Study on the Impact Resistance of FRP Pasted onto a Blastproof Partition Wall under Out-of-Plane Repeated Impact Load[J]. Coatings. 2022, 12(12): 1836.
[19] 张君博. POZD和LRS-FRP提升钢筋混凝土人防墙抗冲击性能研究[D]. 青岛理工大学. 2022.
ZHANG Junbo. Study on impact resistance of reinforced concrete civil air defense wall with POZD and LRS-FRP[D]. Qingdao University of Technology.2022
[20] WU Yu-fei, HUANG Yue. Hybrid Bonding of FRP to Reinforced Concrete Structures[J]. Journal of composites for construction. 2008, 12(3): 266-273.
[21] SUN Zeyang, ZHENG Yi, SUN Yunlou, et al. Deformation ability of precast concrete columns reinforced with steel-FRP composite bars (SFCBs) based on the DIC method[J]. Journal of Building Engineering. 2023, 68: 106083.
[22] LIAN Huiheng, SUN Xinjian, YU Zhenpeng, et al. Study on the dynamic fracture properties and size effect of concrete based on DIC technology[J]. Engineering Fracture Mechanics. 2022, 274: 108789.
[23] 胡良鹏, 孙阳阳, 岳松林, 等. 基于高速DIC的近场冲击下高强混凝土动态压缩性能研究[J]. 振动与冲击. 2023, 42(12): 77-87.
HU Liangpeng, SUN Yangyang, YUE Songlin, et al. Nvestigation of dynamic compression performance of high-strength concrete under near-field impact based on high-speed DIC[J]. Journal of Vibration and Shock. 2023, 42(12): 77-87.

PDF(5197 KB)

Accesses

Citation

Detail

段落导航
相关文章

/