强冲击载荷下电磁阻尼器磁阻尼力影响分析

梁仕民, 杨国来, 王义金, 胡自明

振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 21-27.

PDF(2072 KB)
PDF(2072 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 21-27.
论文

强冲击载荷下电磁阻尼器磁阻尼力影响分析

  • 梁仕民,杨国来,王义金,胡自明
作者信息 +

Analysis on the effect of magnetic braking force of an electromagnetic damper under intensive impact load

  • LIANG Shimin,YANG Guolai,WANG Yijin,HU Ziming
Author information +
文章历史 +

摘要

永磁式电磁阻尼器具有无接触、无污染、结构简单和可靠性高等优点,将其应用在火炮制退机上具有广阔的发展前景,但火炮在发射后产生的强冲击载荷使得电磁阻尼器的加速度最高可达1200m/s2,因此在强冲击载荷下磁阻尼力的影响亟需分析。为确保电磁阻尼器能够满足火炮制退机的使用要求,引入火炮后坐运动方程得到强冲击载荷下磁阻尼力的变化规律,同时利用解析模型和有限元模型对模型进行相互映证。对电磁阻尼器在后坐过程中产生的寄生效应如端部效应、磁性饱和与涡流去磁效应等进行分析,结果表明,在后坐过程中,端部效应使得端部区域磁场强度降低,从而降低磁阻尼力;磁性饱和使得涡流区域的面积增加,导致涡流去磁效应加强,使磁阻尼力曲线产生“马鞍”型效应。通过对磁阻尼力的影响进行分析,为后续电磁阻尼器的设计和优化研究提供参考。

Abstract

The permanent magnet type electromagnetic damper has the advantages of contact, no pollution, simple structure and high reliability, and it has a broad development prospect to be applied to the artillery recoil mechanism. However, the intensive impact load generated by the artillery after firing makes the acceleration of the electromagnetic damper up to 1200m/s2. Therefore, the influence of the magnetic braking force under the strong impact load needs to be analyzed urgently. To ensure that the electromagnetic damper can meet the requirements of the artillery recoil mechanism, the recoil equation of motion of the artillery is introduced to obtain the variation law of the magnetic braking force under the intensive impact load, and the analytical model and the finite element model are used to cross-validate the model. The results show that during the recoil process, the edge effect decreases the magnetic field strength in the edge area, which reduces the magnetic braking force; the magnetic saturation increases the area of the eddy current area, which strengthens the eddy current demagnetization effect and causes the magnetic damping force curve to have a "saddle" effect. By analyzing the effect of magnetic braking force, it provides reference for the subsequent design and optimization study of electromagnetic dampers.

关键词

电磁阻尼器 / 后坐运动方程 / 磁阻尼力 / 寄生效应

Key words

Electromagnetic Damper / recoil equation of motion / magnetic braking force / parasitic effect

引用本文

导出引用
梁仕民, 杨国来, 王义金, 胡自明. 强冲击载荷下电磁阻尼器磁阻尼力影响分析[J]. 振动与冲击, 2024, 43(18): 21-27
LIANG Shimin, YANG Guolai, WANG Yijin, HU Ziming. Analysis on the effect of magnetic braking force of an electromagnetic damper under intensive impact load[J]. Journal of Vibration and Shock, 2024, 43(18): 21-27

参考文献

[1] 高树滋, 陈运生, 张月林, 等. 火炮反后坐装置设计 [M]. 北京; 兵器工业出版社. 1995
GAO Shuzi, CHEN Yunsheng, ZHANG Yuelin, et al. Gun recoil mechanism [M]. Beijing: The Publishing House of Ordnance Industry, 1995.
[2] 梁仕民, 杨国来, 李加浩, 等. 永磁式电磁阻尼器磁性能解析计算及阻尼特性分析 [J]. 弹道学报, 2022, 34(03): 91-96.
LIANG Shimin, YANG Guolai, LI Jiahao, et al. Analytical Calculation of Magnetic Performance and Damping Characteristic Analysis of Permanent Magnet Electromagnetic Damper [J]. Journal of Ballistics, 2022, 34(03): 91-96.
[3] LI L, YANG G L, WANG L Q. Dynamic mechanical characteristics of NdFeB in electromagnetic brake [J]. Defence Technology, 2023, 19: 111-125.
[4] SANG N, ZHANG C, CHEN J, et al. A Dual-Sided Hybrid Excitation Eddy Current Damper for Vibration Suppression in Low Damping Linear Motor System [J]. IEEE Transactions on Industrial Electronics, 2021, 68(10): 9897-9907.
[5] CHEN C, XU J, YUAN X, et al. Characteristic Analysis of the Peak Braking Force and the Critical Speed of Eddy Current Braking in a High-Speed Maglev [J]. Energies, 2019, 12(13): 2622.
[6] TARVIRDILU ASL R, YüKSEL H N M, KEYSAN O. Multi-objective design optimization of a permanent magnet axial flux eddy current brake [J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2019: 998-1011.
[7] PETRINI F, GIARALIS A, WANG Z. Optimal tuned mass-damper-inerter (TMDI) design in wind-excited tall buildings for occupants’ comfort serviceability performance and energy harvesting [J]. Engineering Structures, 2020, 204: 109904.
[8] SHARIF S, FAIZ J, SHARIF K. Performance analysis of a cylindrical eddy current brake [J]. Iet Electric Power Applications, 2012, 6(9): 661-668.
[9] FRANEK J. Permanent magnet motion in a copper tube [J]. Turkish Journal of Physics, 2018, 42(2): 125-135.
[10] 王楠楠, 刘宁, 沈艳萍, 等. 冲击载荷下圆筒型电涡流阻尼器动力特性研究 [J]. 振动与冲击, 2021, 40(11): 65-69.
WANG Nannan, LIU Ning, SHEN Yanping, et al. Dynamic characteristics of cylindrical eddy current damper under impact load [J]. Journal of Vibration and Shock, 2021, 40(11): 65-69.
[11] GULBAHCE M O, KOCABAS D A. A comprehensive approach to determining the speed/torque relationships of eddy current brakes [J]. Electrical Engineering, 2018, 100(3): 1579-1587.
[12] CHEN H, YU F, YAN W, et al. Calculation and Analysis of Eddy-Current Loss in Switched Reluctance Motor [J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8): 1-4.

PDF(2072 KB)

Accesses

Citation

Detail

段落导航
相关文章

/