三自由度绳驱动波浪补偿装置的动力学建模与振动特性分析

李建1, 2, 王生海1, 2, 赵世龙1, 2, 王建立1, 2, 3, 韩广冬1, 2, 孙玉清1, 2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 220-231.

PDF(3318 KB)
PDF(3318 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 220-231.
论文

三自由度绳驱动波浪补偿装置的动力学建模与振动特性分析

  • 李建1,2,王生海1,2,赵世龙1,2,王建立1,2,3,韩广冬1,2,孙玉清1,2
作者信息 +

Dynamic modelling and vibration characteristics analysis of a 3-DOF rope-driven wave compensation device

  • LI Jian1,2,WANG Shenghai1,2,ZHAO Shilong1,2,WANG Jianli1,2,3,HAN Guangdong1,2,SUN Yuqing1,2
Author information +
文章历史 +

摘要

受波浪运动的影响,在使用起重机进行海上补给作业的过程中,吊具容易产生不良运动,严重影响了补给作业的效率和安全性。为实现船用起重机在横摇、纵摇和升沉方向上的波浪补偿功能,提出了一种三自由度绳驱动波浪补偿装置;首先,考虑到不均匀装载工况,基于Newton-Euler法建立了补偿装置的动力学模型,并通过Adams虚拟样机仿真验证了数学模型的正确性;其次,对不均匀装载工况下的绳索张力分布情况进行分析,得到了吊具重心位置的危险分布区域;再次,采用特征值法求解补偿装置的一阶固有频率,得到了载荷重量、绳索刚度以及吊具位姿对补偿装置一阶固有频率的影响规律;最后,在理论分析的基础上,通过试验验证了补偿方案的可行性,并证明了数学模型的正确性。

Abstract

Due to the influence of wave motion, in the process of using the crane to carry out the replenishment operation at sea, the spreader is prone to undesirable movement, which seriously affects the efficiency and safety of the replenishment operation. A three-degree-of-freedom rope-driven wave compensation device is proposed to realize the wave compensation function of ship-mounted cranes in roll, pitch, and heave directions. Firstly, considering the uneven loading conditions, the dynamic model of the compensation device is established based on the Newton-Euler method. Furthermore, the feasibility of the compensation scheme and the correctness of the dynamic model are verified by the Adams virtual prototype. Secondly, the rope tension distribution under uneven loading conditions is analyzed, and the dangerous distribution area of the barycenter position of the spreader is obtained. Again, the first-order natural frequency of the compensation device is solved by the eigenvalue method. The influence of load weight, rope stiffness and spreader attitude on the first-order natural frequency of the compensation device is obtained. Finally, based on theoretical analysis, the feasibility of the compensation scheme is verified by experiments, and the correctness of the mathematical model is proved.

关键词

波浪补偿 / 船用起重机 / 绳驱动 / 动力学分析 / 振动特性

Key words

wave compensation / ship-mounted crane / rope-driven / dynamic analysis / vibration characteristics

引用本文

导出引用
李建1, 2, 王生海1, 2, 赵世龙1, 2, 王建立1, 2, 3, 韩广冬1, 2, 孙玉清1, 2. 三自由度绳驱动波浪补偿装置的动力学建模与振动特性分析[J]. 振动与冲击, 2024, 43(18): 220-231
LI Jian1, 2, WANG Shenghai1, 2, ZHAO Shilong1, 2, WANG Jianli1, 2, 3, HAN Guangdong1, 2, SUN Yuqing1, 2. Dynamic modelling and vibration characteristics analysis of a 3-DOF rope-driven wave compensation device[J]. Journal of Vibration and Shock, 2024, 43(18): 220-231

参考文献

[1] 王建立,王生海,孙玉清等. 船用起重机伸缩套管防摆装置动力学分析与试验[J].振动与冲击, 2022, 41(11): 141-148.
WANG Jianli, WANG Shenghai, SUN Yuqing, et al. Dynamic analysis and tests of anti-swing device for telescopic sleeve of' ship-mounted crane[J]. Journal of Vibration and Shock, 2022, 41(11): 141-148.
[2] Cao Y, Li T. Review of Antiswing Control of Shipboard Cranes[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7 (02) :346-354.
[3] 顾永凤,邱广庭,谢  荣等. 6级海况下波浪补偿装置平台的机构优化设计[J]. 舰船科学技术, 2017, 39(21): 141-145.
GU Yongfeng, QIU Guangting, XIE Rong, et al. Optimization design of heave compensation device platform under six level of sea condition [J]. Ship science and technology, 2017, 39(21): 141-145.
[4] 王哲骏,谢金辉,高  剑等.波浪补偿技术现状和发展趋势[J].舰船科学技术,2014, 36(11): 1-7.
WANG Zhejun, XIE Jinhui, GAO Jian, et al. Current status and development tendency of waves compensation system [J]. Ship science and technology, 2014, 36(11): 1-7.
[5] 刘祥勇,徐志强,谌志新.波浪被动补偿装置的模型与实验[J].哈尔滨工程大学学报,2017, 38(10): 1518-1524.
LIU Xiangyong, XU Zhiqiang, SHEN Zhixin. Model and experiments of wave passive compensation device [J]. Journal of Harbin Engineering University, 2017, 38(10): 1518-1524.
[6] 吴金波,宋宇宸.海上作业起重机主动升沉补偿系统的设计与分析[J].中国机械工程,2016,27(15):1989-1996.
WU Jinbo, SONG Yuchen. Design and Analysis of Active Heave Compensation System for Offshore Cranes[J]. China mechanical engineering, 2016,2 7(15):1989-1996.
[7] Wang S, Sun Y, Chen H, et al. Dynamic modelling and analysis of 3-axis motion compensated offshore cranes[J]. Ships and Offshore Structures,2018,13(3): 265-272.
[8] Kim Y, Kim Y, Jung S Y, et al. Developing Accurate Long-Distance 6-DOF Motion Detection With One-Dimensional Laser Sensors: Three-Beam Detection System[J]. IEEE Trans. Industrial Electronics,2013,60(8): 3386-3395.
[9] 李清桓,段清娟,李  帆等. 绳牵引机器人加入弹簧后刚度分析[J]. 振动与冲击, 2017, 36(10): 197-202+223.
LI Qinghuan, DUAN Qingjuan, LI Fan, et al. Stiffness analysis of a cable-driven parallel robot by adding springs [J]. Journal of Vibration and Shock, 2017, 36(10): 197-202+223.
[10] Kery S, Hughes G, May E, et al. Achieving high container through-put rates, between vessels in High Seas (a vision of HiCASS) [C]//Proceedings of OCEANS 2005 MTS/IEEE. IEEE, 2005: 454-459.
[11] 胡永攀,陶利民,吕  伟等.并联波浪补偿系统的鲁棒控制方法[J].国防科技大学学报,2014,36(06):171-179.
HU Yongpan, TAO Limin, LV Wei, et al. Robust control method of parallel wave compensation system [J]. Journal of national university of defense technology,2014,36(06):171-179.
[12] Hu Y, Tao L, Lv W. Anti-pendulation analysis of parallel wave compensation systems[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2016, 230(1): 177-186.
[13] Lv W, Tao L, Hu Y. On the real-time calculation of the forward kinematics of a suspended cable–driven parallel mechanism with 6-degree-of-freedom wave compensation[J]. Advances in Mechanical Engineering, 2017, 9(6): 1687814017706264.
[14] Lv W, Tao L, Ji Z. Sliding mode control of cable-driven redundancy parallel robot with 6 DOF based on cable-length sensor feedback[J]. Mathematical Problems in Engineering, 2017, (2017): 1-21.
[15] 陈原,郭登辉,田丽霞.绳牵引刚柔式波浪补偿并联机构的设计与建模[J].浙江大学学报(工学版),2021,55(05):810-822.
CHEN Yuan, GUO Denghui, TIAN Lixia. Design and modeling of wire-driven rigid-flexible parallel mechanism for wave compensation [J]. Journal of Zhejiang University (Engineering Science) ,2021,55(05):810-822.
[16] Uyguroğlu M, Demirel H. Kinematic analysis of tendon-driven robotic mechanisms using oriented graphs[J]. Acta mechanica, 2006, 182(3-4): 265-277.
[17] Sun M, Wang S, Han G, et al. Multi-cable anti-swing system for cranes subject to ship excitation and wind disturbance: Dynamic analysis and application in engineering[J]. Ocean Engineering, 2023: 114518.
[18] 孙茂凱,王生海,韩广冬等.基于柔索并联的细长杆件吊装减摇系统动力学分析与试验研究[J].振动与冲击, 2023, 42(18): 286-294.
SUN Maokai, WANG Shenghai, HAN Guangdong, et al. Dynamic analysis and experiment of the anti-swing system for slender payload lifting based on the cable parallel mechanism [J]. Journal of Vibration and Shock, 2023, 42(18): 286-294.
[19] Fossen T I. Marine control systems[M]. Trondheim, Norway: Springer, 2002.
[20] Pierson Jr W J, Moskowitz L. A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii[J]. Journal of geophysical research, 1964, 69(24): 5181-5190.
[21] Ma O, Angeles J. Architecture singularities of platform manipulators[C]// Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 1991: 1542-1547.

PDF(3318 KB)

Accesses

Citation

Detail

段落导航
相关文章

/