考虑滚道波纹度的影响,基于Hertz弹性接触理论建立了工作辊故障轴承的动态非线性接触力模型。在此基础上,考虑轧机辊系结构振动的影响,建立了工作辊轴承滚道波纹度故障下板带轧机的三自由度非线性垂直振动模型。通过数值仿真分析了波纹度波数、幅值、轴承间隙以及转速等参数对轧机轧辊非线性振动特性的影响。研究发现:在故障轴承非线性接触力的激励下,不同波纹数振动频谱图中出现不同的故障特征频率、倍频以及与轧辊转频的组合频率;当波纹数等于滚动体数目时,轧辊将产生剧烈振动。随着轧辊轴承波纹度幅值的增大,故障特征频率及其三倍频幅值显著增加,通过合理改变轴承间隙能够有效抑制,但过大的轴承间隙会降低系统稳定性。在中等转速范围内,轴承波纹度故障将导致轧机出现超谐波共振、主共振等多种非线性振动行为。此外,相对于外圈故障,轧机系统对工作辊轴承内圈波纹度故障的表现更为敏感。
Abstract
Considering the effect of raceway waviness, a dynamic nonlinear contact force model for work roll failure bearings is established based on Hertz elastic contact theory. On this basis, the three-degree-of-freedom nonlinear vertical vibration model of the strip mill under the fault of raceway waviness of work roll bearing is established considering the influence of structural vibration of the mill roll system. The effects of parameters such as ripple degree wave number, amplitude, bearing clearance and rotational speed on the nonlinear vibration characteristics of mill rolls are analyzed with numerical simulation. It is found that under the excitation of the nonlinear contact force of the faulty bearing, the vibration spectrum of different ripple numbers shows different fault characteristic frequencies, multiplier frequencies and combined frequencies with the roll rotation frequency; when the ripple number is equal to the number of rolling bodies, the roll will produce violent vibration. With the increase of roll bearing ripple degree amplitude, the characteristic frequency of fault and its triplet frequency amplitude increase significantly, which can be effectively suppressed with reasonably changing the bearing clearance, but the excessive bearing clearance will reduce the system stability. In the medium speed range, the bearing ripple fault will lead to a variety of nonlinear vibration behaviors in the mill such as superharmonic resonance and main resonance. In addition, the rolling mill system is more sensitive to the performance of the inner ring corrugation failure of the work roll bearing compared to the outer ring failure.
关键词
滚道波纹度 /
轴承 /
非线性 /
板带轧机 /
垂直振动
{{custom_keyword}} /
Key words
raceway waviness /
bearing /
nonlinear /
strip mill /
vertical vibration
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Cui J X, Peng Y, Wang J. Instability of roll nonlinear system with structural clearance in rolling process[J]. Journal of Iron and Steel Research International,2022,30(1):112-125.
[2] Zhang G X, Bao J H, Li W H, et al. Coupled Vibration Characteristics Analysis of Hot Rolling Mill with Structural Gap[J]. Shock and Vibration,2021,2021:1-10.
[3] 李旭,曹雷,陈方升等.冷连轧机垂直振动理论研究进展与展望[J].轧钢,2022,39(05):1-12.
Li Xu, Cao Lei, Chen Fang-sheng, et al. Review and prospect of theoretical studies on vertical vibration in tandem cold rolling mill[J]. Steel Rolling,2022,39(05):1-12.
[4] 杨旭,彭开香,罗浩等.基于EEMD和SVM的冷轧机垂直振动相关故障的诊断[J].上海交通大学学报,2015,49(06):751-756.
Yang Xu, Peng Kai-xiang, Luo Hao, et al. Vibration-related fault diagnosis in cold rolling mill by using EEMD and SVM[J]. Journal of Shanghai Jiao Tong University,2015,49(06):751-756.
[5] 王明,徐慧东,和东平等.颗粒阻尼吸振器对轧机辊系减振特性的研究[J].振动与冲击,2023,42(02):23-34.
Wang Ming, Xu Hui-dong, He Dong-ping, et al. Vibration reduction characteristics of a rolling mill roll system with particle damping vibration absorber[J]. Journal of Vibration and Shock,2023,42(02):23-34.
[6] 张义方,何成,崔立等.传动-压下-带钢耦合激励CSP轧机振动分析[J].中国冶金,2022,32(9):79-84.
Zhang Yi-fang, He Cheng, Cui Li, et al. Vibration analysis of CSP rolling mill by excitation of transmission-screwdown-strip coupling[J]. China Metallurgy,2022,32(9):79-84.
[7] Liu Z L, Li P, Jiang J H, et al. Research on vibration characteristics of mill rolls based on nonlinear stiffness of the hydraulic cylinder[J]. Journal of Manufacturing Processes,2021,64:1322-1328.
[8] 孙韵韵,肖会芳,徐金梧.考虑轧制界面粗糙形貌的轧机辊系非线性振动特性研究[J].振动与冲击,2017,36(08):113-120.
Sun Yun-yun, Xiao Hui-fang, Xu Jin-wu, et al. Nonlinear vibration characteristics of a rolling mill system considering the roughness of rolling interface[J]. Journal of Vibration and Shock,2017,36(08):113-120.
[9] Zhao C, Sun J L, Lin S L, et al. Rolling mill bearings fault diagnosis based on improved multivariate variational mode decomposition and multivariate composite multiscale weighted permutation entropy[J]. Measurement,2022,195:111190.
[10] Shi P M, Yu Y, Gao H, et al. A novel multi-source sensing data fusion driven method for detecting rolling mill health states under imbalanced and limited datasets[J]. Mechanical Systems and Signal Processing,2022,171:108903.
[11] Liu Y J, Wang S, Qi J B, et al. Vibrations of tandem cold rolling mill: coupled excitation of rolling force and variable stiffness of fault-free back-up roll bearing[J]. Journal of Iron and Steel Research International,2023:1-11.
[12] 刘国云,曾京,戴焕云等. 考虑轴箱轴承表面波纹度的高速车辆振动特性分析[J].机械工程学报,2016,52(14):147-156.
Liu Guo-yun, Zeng Jing, Dai Huan-yun, et al. Vibration Performance of High-speed Vehicles under Axle Box Bearing Surface Waviness[J]. Journal of Mechanical Engineering,2016,52(14):147-156.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}