含风电场的分数阶电力系统自适应同步控制

艾纯玉1, 何山1, 2, 王维庆1, 2, 樊小朝3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 306-312.

PDF(1648 KB)
PDF(1648 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 306-312.
论文

含风电场的分数阶电力系统自适应同步控制

  • 艾纯玉1,何山1,2,王维庆1,2,樊小朝3
作者信息 +

Adaptive synchronous control of a fractional order power system including wind farm

  • AI Chunyu1, HE Shan1,2, WANG Weiqing1,2, FAN Xiaochao3
Author information +
文章历史 +

摘要

针对含风电场的分数阶电力系统的混沌振荡问题,基于自适应同步理论,提出了一种自适应同步控制方法。首先,建立了一个整数阶三维且含储能装置的电力系统模型并推广为分数阶,采用相图、时序图、分岔图等方法对含风电场的分数阶电力系统
的动力学行为进行分析。其次,推导了自适应同步控制定理的证明。最后,通过含有待辨识参数且含风电场分数阶混沌电力系统与稳定状态的系统实现完全同步,间接地实现系统的混沌控制和系统的参数辨识。

Abstract

Based on the adaptive synchronization theory, an adaptive synchronization control method is proposed to solve the problem of chaotic oscillation in fractional power systems with wind farms. Firstly, an integer-order three-dimensional power system model with energy storage device is established and extended to fractional order. The phase diagram, time series diagram, bifurcation diagram and other methods are used to analyze the dynamic behavior of fractional order power system with wind farm. Secondly, the proof of adaptive synchronization control theorem is derived. Finally, by achieving complete synchronization between the fractional-order chaotic power system containing parameters to be identified and a stable state system, the chaos control and parameter identification of the system are indirectly realized.

关键词

含风电场的分数阶电力系统 / 储能装置 / 自适应同步控制 / 参数辨识

Key words

Fractional power system with wind farm / Energy storage device / Adaptive synchronous control / Parameter identification

引用本文

导出引用
艾纯玉1, 何山1, 2, 王维庆1, 2, 樊小朝3. 含风电场的分数阶电力系统自适应同步控制[J]. 振动与冲击, 2024, 43(18): 306-312
AI Chunyu1, HE Shan1, 2, WANG Weiqing1, 2, FAN Xiaochao3. Adaptive synchronous control of a fractional order power system including wind farm[J]. Journal of Vibration and Shock, 2024, 43(18): 306-312

参考文献

[1] Qian C, Qu D W. Dynamic surface sliding mode control of chaos in the fourth-order power system [J]. Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, 2023, 170.
[2] Kumar M, Singh P P. Chaos control of a four-dimensional fundamental power system using pole placement-based proportional integral sliding mode control [J]. International Journal of Automation and Control, 2019, 13(6): 679-697. 
[3] Zhu D, Zhang W, Liu C, et al. Fractional-order hyperbolic tangent sliding mode control for chaotic oscillation in power system [J]. Mathematical Problems in Engineering, 2021, 2021: 1-10.
[4] 王聪,张宏立,马萍. 基于有限时间函数投影的电力系统混沌控制[J]. 振动与冲击,2021,40(14) : 125 -131.
WANG Cong, ZHANG Hongli, MA Ping. Finite-time function projective synchronization control method for a chaotic power system[J]. Journal of Vibration and Shock, 2021,40( 14) : 125 -131.
[5] 李静贤,王聪,张宏立等.考虑静差消除的混沌电力系统有限时间命令滤波反步控制[J].振动与冲击,2023,42(02):139-148.
LI Jingxian,WANG Cong,ZHANG Hongli,Finite-time command filter backstepping control of chaotic power systems considering static error elimination[J]. Journal of Vibration and Shock,2023,42(02):139-148.
[6]倪骏康,刘崇新,庞霞.电力系统混沌振荡的等效快速终端模糊滑模控制 [J]. 物 理 学报,2013,62 (19):107-113.
Ni Jun-Kang Liu Chong-Xin Pang Xia Fuzzy fast terminal sliding mode controller using an equivalent control for chaotic oscillation in power system Acta Physica Sinica,2013,62 (19):107-113.
[7]江世明,曾喆昭,陈开义.互联电力系统混沌控制的新型滑模控制方法[J].控制工程,2017,24(05):978-983.
JIANG Shi ming,ZENG Zhe zhao, CHEN Kai Yi . A New Sliding Mode Control Method of Chaos Control for Interconnected Power Systems [J]. Control Engineering of China,2017,24(05):978-983.
[8]崔浩,章彦燕,朱英伟等.阻尼互联电力系统混沌振荡的滑模干扰观测器[J].电网技术,2018,42(12):4083-4090.
CUI Hao, ZHANG Yanyan, ZHU Yingwei, et al.Sliding Mode Interference Observer for Damping Chaotic Oscillation of Interconnected Power System [J]. Power System Technology, 2018, 42(12):4083-4090.
[9]闵富红,马汉媛,王耀达.含功率扰动电力系统混沌振荡的动态滑模控制[J].通信学报,2019,40(1):119-129.
MIN Fuhong, MA Hanyuan, WANG Yaoda Surface sliding mode controller for chaotic oscillation in power system with power disturbance [J].Journal on Communications, 2019, 40(1):119 -129.
[10] Abiddine E Z F,Mohamed F,O. N O, et al. Acoustics of Fractal Porous Material and Fractional Calculus [J]. Mathematics, 2021, 9(15).
[11] Tzounas G, Dassios I, Murad M A A, et al. Theory and implementation of fractional order controllers for power system applications [J]. IEEE Transactions on Power Systems, 2020, 35(6): 4622-4631.
[12] Mirzajani S, Aghababa M P, Heydari A. Adaptive T-S fuzzy control design for fractional-order systems with parametric uncertainty and input constraint [J]. Fuzzy Sets and Systems, 2019, 365: 22-39.
[13] Ai C, He S, Fan X. Parameter estimation of fractional-order chaotic power system based on lens imaging learning strategy state transition algorithm [J]. IEEE Access, 2023, 11: 13724-13737. 
[14]谭文,张敏,李志攀.分数阶互联电力系统混沌振荡及其同步控制[J].湖南科技大学学报:自然科学版,2011(2):74-78.
TAN Wen,ZHANG Min,LI Zhi pan. Chaotic oscillation of interconnected power system and its synchronization [J]. Journal of Hunan University of Science &Technology (Natural Science Edition),2011(2):74-78.
[15]闵富红, 王耀达, 窦一平. 含励磁环节的分数阶电力系统混沌振荡分析与控制[J]. 电子与信息学报, 2017, 39(8): 1993-1999.
MIN Fuhong WANG Yaoda Dou Yiping Analysis and Control of Chaotic Oscillation in Fractional-order Power System with Excitation Model [J]. Journal of Electronics & Information Technology, 2017, 39(8): 1993-1999.
[16]彭光娅,闵富红,黄雯迪,等.含电磁功率扰动的分数阶电力系统混沌分析与同步控制[J].南京师范大学学报:工程技术版,2017(1):18-25,36.
Peng Guangya,Min Fuhong,Huang Wendi, et al. Chaotic Analysis and Synchronization Control of Fractional Order Power System with the Disturbance of Electromagnetic Power [J]. Journal Of Nanjing Normal University (Engineering And Technology edition),2017(1);18-25,36.
[17]张浩宇.分数阶船舶电力系统特性分析及控制[D].中南大学,2022.
Zhang hao yu Characteristics analysis and control of the fractional order ship power system [D]. Central South University,2022.
[18] Peng D, Sun K H, Alamodi A O A. Dynamics analysis of fractional-order permanent magnet synchronous motor and its DSP implementation [J]. International Journal of Modern Physics B, 2019, 33(6): 1950031.
[19]严波,贺少波.Conformable分数阶单机无穷大电力系统分岔与混沌研究[J].系统科学与数学,2020(6):954-968.
Yan bo He Shaobo the bifurcation and chaos analysis of conformable fractional unipolar infinite power system [J]. Journal of Systems Science and Mathematical Sciences,2020(6):954-968.
[20]鲜永菊,夏诚,徐昌彪.新混沌系统及其分数阶系统的自适应同步控制[J].控制理论与应用,2018,35(06):878-886.
XIAN Yongju, XIA Cheng, XU Changbiao. New chaotic system and the adaptive synchronization control of its fractional order system [J]. Control Theory & Applications, 2018, 35(06):878-886.
[21] Chen D, Liu S, Ma X. Modeling, nonlinear dynamical analysis of a novel power system with random wind power and it's control [J]. Energy, 2013,53: 139-146.
[22]王江彬,刘凌,刘崇新.七阶电力系统混沌振荡的动态面滑模控制[J].电机与控制学报, 2021, 25(04):1-8.
WANG Jiang-bin, LIU Ling, LIU Chong-xin Dynamic surface sliding mode control of chaotic oscillation in a seven-dimensional power system [J]. Electric Machines and Control, 2021, 25(04):1-8.
[23]方洁,张少辉,江泳.基于改进自适应协同控制方法的电力系统混沌控制[J/OL].电子与信息学报:1-10[2023-10-02].
FANG Jie ZHANG Shaohui JIANG Yong Chaotic Power System Control Based on Improved Adaptive Synergetic Control Method[J/OL]. Journal of Electronics & Information Technology:1-10[2023-10-02]. 

PDF(1648 KB)

113

Accesses

0

Citation

Detail

段落导航
相关文章

/