主动激励声波在后张法混凝土传播机理可视化及影响研究

侯杰1, 2, 李胜利1, 2, 姜楠3, 徐斌1, 2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 36-41.

PDF(2109 KB)
PDF(2109 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 36-41.
论文

主动激励声波在后张法混凝土传播机理可视化及影响研究

  • 侯杰1,2,李胜利1,2,姜楠3,徐斌1,2
作者信息 +

Visualization of the propagation mechanism and study on the influencing factors of active excitation acoustic waves in post-tensioned concrete structures 

  • HOU Jie1,2,LI Shengli1,2,JIANG Nan3,XU Bin1,2
Author information +
文章历史 +

摘要

激振器作为主动激励信号时,不同的激励频率和激励幅值的声波在后张法混凝土结构内的传播机理及影响因素对实际工程提供主动激励信号波形参数选取及声发射传感器布置方式具有重要意义。本文利用COMSOL数值模拟方法可视化了激振器激励声波在后张法混凝土梁内的传播机理,提出了激振器主动激励信号波形参数确定的方法。结果表明,数值模拟方法可视化了激振器激励声波在后张法混凝土结构内的传播路径;构建了不同激励频率和激励幅值声波在后张法混凝土结构内衰减模型,可作为稳定的主动激励信号波形参数选取和声发射传感器布置方式的理论基础,当激励幅值相同,激励频率为10 kHz时,激励声波在后张法混凝土结构内衰减系数最小,实际工程中为保证信噪比,较大的激励幅值更有优势。 

Abstract

The propagation mechanism and influencing factors of sound waves with different excitation frequencies and amplitudes in the post-tension concrete structure are of great significance for the selection of waveform parameters of active excitation signals using vibration exciter and the arrangement of acoustic emission sensors in practical projects. In this paper, the propagation mechanism of excitation acoustic waves using vibration exciter in post-tension concrete beams was visualized with COMSOL numerical simulation, and a method for determining the waveform parameters of active excitation signals was proposed. The results show that the numerical simulation visualizes the propagation path of the acoustic wave in the post-tension concrete structure. The attenuation models of acoustic waves with different excitation frequencies and amplitudes in the structures were constructed, which can be used as a theoretical basis for stable active excitation signal waveform parameter selection and acoustic emission sensors arrangement, when the excitation amplitude is the same and the excitation frequency is 10 kHz, the attenuation coefficient of excitation acoustic waves in post-tensioned concrete structures is the smallest, and in order to ensure the signal-to-noise ratio, larger excitation amplitude is more advantageous in practical engineering.

关键词

激振器; 后张法混凝土结构; 传播机理; 衰减模型  /

Key words

vibration exciter / post-tensioned concrete structures / propagation mechanism / attenuation models

引用本文

导出引用
侯杰1, 2, 李胜利1, 2, 姜楠3, 徐斌1, 2. 主动激励声波在后张法混凝土传播机理可视化及影响研究[J]. 振动与冲击, 2024, 43(18): 36-41
HOU Jie1, 2, LI Shengli1, 2, JIANG Nan3, XU Bin1, 2. Visualization of the propagation mechanism and study on the influencing factors of active excitation acoustic waves in post-tensioned concrete structures [J]. Journal of Vibration and Shock, 2024, 43(18): 36-41

参考文献

[1] E. Verstrynge, C. Van Steen, E. Vandecruys, M. Wevers, Steel corrosion damage monitoring in reinforced concrete structures with the acoustic emission technique: A review[J], Construction and Building Materials. 2022, 349: 128732. 
[2] G. Ma, Q. Du, Structural health evaluation of the prestressed concrete using advanced acoustic emission (AE) parameters[J], Construction and Building Materials. 2020, 250: 118860. 
[3] Q. Ji, L. Jian-Bin, L. Fan-Rui, Z. Jian-Ting, W. Xu, Stress evaluation in seven-wire strands based on singular value feature of ultrasonic guided waves[J], Structural Health Monitoring. 2022, 21:518–533. 
[4] B. Dubuc, A. Ebrahimkhanlou, S. Salamone, Stress monitoring of prestressing strands in corrosive environments using modulated higher-order guided ultrasonic waves, Structural Health Monitoring [J].Structural Health Monitoring,  2020, 19: 202–214. 
[5] 柳小勤,汤林江,侯凯泽等.基于声发射的滚动轴承损伤定位方法研究[J].振动与冲击,2020,39(15):176-182+213. 
LIU Xiaoqin, TANG Linjiang, HOU Kaize, WU Xing, WANG Zhihai. Fault localization for rolling bearing based on AE [J]. Journal of Vibration and Shock, 2020,39(15):176-182+213.
[6] 缪祥垚,伍星,柳小勤,汤林江.基于声发射Lamb波频散特性的轴承损伤单传感器定位[J].振动与冲击,2023,42(06):196-201.
MIAO Xiangyao, WU Xing, LIU Xiaoqin, TANG Linjiang. Single-sensor location of a bearing defect based on the Lamb wave dispersion characteristics of acoustic emission[J]. Journal of Vibration and Shock, 2023,42(06):196-201.
[7] D.F. Hesser, S. Mostafavi, G.K. Kocur, B. Markert, Identification of acoustic emission sources for structural health monitoring applications based on convolutional neural networks and deep transfer learning[J], Neurocomputing. 2021, 453: 1–12.
[8] M. Käding, G. Schacht, S. Marx, Acoustic Emission analysis of a comprehensive database of wire breaks in prestressed concrete girders[J], Engineering Structures. 2022, 270: 114846. 
[9] L. Dong, Q. Tao, Q. Hu, S. Deng, Y. Chen, Q. Luo, X. Zhang, Acoustic emission source location method and experimental verification for structures containing unknown empty areas[J], International Journal of Mining Science and Technology. 2022, 32: 487–497.
[10] 骆辉,李桐,黄强华,薄柯,柴森,李翔.基于声发射技术的大容积玻璃纤维缠绕气瓶冲击损伤评定[J].振动与冲击,2023,42(05):143-149.
LUO Hui, LI Tong, HUANG Qianghua, BO Ke, CHAI Sen, LI Xiang. Impact damage evaluation of large volume glass fiber wrapped gas cylinder based on AE technology[J]. Journal of Vibration and Shock, 2023,42(05):143-149.
[11] X. Cui, Y. Gao, Y. Ma, F. Liu, H. Wang, Time delay estimation using cascaded LMS filters fused by correlation coefficient for pipeline leak localization[J], Mechanical Systems and Signal Processing. 2023, 199: 110500. 
[12] J. Wang, B. Xu, H. Chen, H. Ge, C. Wang, Mesoscale numerical analysis and test on the effect of debonding defect of rectangular CFSTs on wave propagation with a homogenization method[J], Mechanical Systems and Signal Processing. 2022, 163: 108135. 
[13] B. Zima, R. Kędra, Reference-free determination of debonding length in reinforced concrete beams using guided wave propagation[J], Construction and Building Materials. 2019, 207: 291–303. 
[14] S. Gollob, G.K. Kocur, Analysis of the wave propagation paths in numerical reinforced concrete models[J], Journal of Sound and Vibration. 2021, 494: 115861. 
[15] 胡辰阳,陈嵘,江文强等.钢轨中超声导波模式激励方法研究[J].铁道学报,2023,45(02):93-99. 
HU Chenyang, CHEN Rong, JIANG Wenqiang, XU Jingmang, LI Haoran, WANG Ping. Study on Excitation Method of Ultrasonic Guided Wave Mode in Rails[J], Journal of the China Railway Society, 2023,45(02):93-99.
[16] Y. Du, J. Cai, Q. Kan, Q. Zhang, P. Wang, H. Miao, G. Kang, Time-delayed layer-based piezoelectric transducer for unidirectional excitation and reception of SH guided wave[J], Mechanical Systems and Signal Processing. 2023, 193: 110268.
[17] Z. Wang, X. Zhao, H. Zhang, D. Zhen, F. Gu, A. Ball, Active acoustic emission sensing for fast co-estimation of state of charge and state of health of the lithium-ion battery[J], Journal of Energy Storage. 2023, 64: 107192. 
[18] L. Maio, J. Moll, V. Memmolo, J. Simon, Ultrasonic inspection for ice accretion assessment: effects on direct wave propagation in composite media[J], Mechanical Systems and Signal Processing. 2022, 173: 109025. 
[19] Z. Ahmad, T.-K. Nguyen, A. Rai, J.-M. Kim, Industrial fluid pipeline leak detection and localization based on a multiscale Mann-Whitney test and acoustic emission event tracking[J], Mechanical Systems and Signal Processing. 2023, 189: 110067.
[20] Y. Asada, M. Kimura, I. Azechi, T. Iida, N. Kubo, Leak detection by monitoring pressure to preserve integrity of agricultural pipe[J], Paddy and Water Environment. 2019, 17: 351–358.
[21] T.I. Khan, A.A. Rashid, T. Nanami, Theoretical and experimental analysis of acoustic emission signal for resonant sensor on homogenous material[J], Sensing and Bio-Sensing Research. 2023, 39: 100550. 
[22] D.G. Aggelis, M. El Kadi, T. Tysmans, J. Blom, Effect of propagation distance on acoustic emission fracture mode classification in textile reinforced cement[J], Construction and Building Materials. 2017, 152: 872–879. 
[23] W. Du, C. Yang, Y. Pan, Y. Chen, H. Zhang, Study on the flexural behaviours of precracked hollow core beams strengthened with core filling and unbonded prestressing steel strands[J], Engineering Structures. 2023, 274: 115075.
[24] R. Ampadi Ramachandran, C. Lee, L. Zhang, S.M. H, D. Bijukumar, P.S. Pai, K. Foucher, S.-W. Chi, D. Ozevin, M.T. Mathew, Total hip replacement monitoring: numerical models for the acoustic emission technique, Medical & Biological Engineering & Computing[J]. 2022,60: 1497–1510.
[25] Liang X, Lin B, Liu Z, et al. Evaluation of the surface damage of brittle materials based on the attenuation of laser-induced surface acoustic wave[J]. Applied acoustics, 2022, 189: 108617.
[26] M. Li, M. Wang, R. Ding, T. Deng, S. Fang, F. Lai, R. Luoi, Study of acoustic emission propagation characteristics and energy attenuation of surface transverse wave and internal longitudinal wave of wood[J], Wood Science and Technology. 2021, 55: 1619–1637.
[27] Gollob S, Kocur G K. Analysis of the wave propagation paths in numerical reinforced concrete models[J]. Journal of Sound and Vibration, 2021, 494:115861.

PDF(2109 KB)

Accesses

Citation

Detail

段落导航
相关文章

/