基于SMA支承的转子振动控制方法与试验研究

马钰祥1, 臧朝平1, 邢广鹏2, 金福艺1, 袁善虎2, 贾志刚2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 69-79.

PDF(3125 KB)
PDF(3125 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 69-79.
论文

基于SMA支承的转子振动控制方法与试验研究

  • 马钰祥1,臧朝平1,邢广鹏2,金福艺1,袁善虎2,贾志刚2
作者信息 +

Rotor vibration control method and experiments based on SMA support

  • MA Yuxiang1,ZANG Chaoping1,XING Guangpeng2,JIN Fuyi1,YUAN Shanhu2,JIA Zhigang2
Author information +
文章历史 +

摘要

提出了基于形状记忆合金(shape memory alloy,SMA)可控刚度支承的转子系统过临界转速振动控制方法,并试验验证了其有效性。首先,通过对SMA弹簧开展刚度测试得到弹簧的变刚度特性,建立SMA弹簧温度-刚度模型,设计了SMA变刚度支承结构。然后,提出了一种基于变刚度支承的转子系统振动响应控制方法,以带有多个变刚度支承的柔性转子系统为例,对支承的变刚度策略进行优化设计。最后,开展了基于SMA可控刚度支承的转子系统振动控制试验,过1、2阶临界最大振幅减振率分别可达到39.84%和57.93%,验证了转子系统支承刚度变化策略对过临界转速时振动抑制的有效性。

Abstract

A vibration control method for rotor systems at supercritical speeds based on shape memory alloy (SMA) controllable stiffness support was proposed, and its effectiveness was verified through experiments. Firstly, the variable stiffness characteristics of SMA springs were obtained through stiffness testing, and a temperature stiffness model of SMA springs was established. The SMA variable stiff-ness support structure was designed. Then, a vibration response control method for rotor systems based on variable stiffness supports was proposed, and the variable stiffness strategy was optimized and designed using a flexible rotor system with multiple variable stiffness supports as an example. Finally, vibration control experiments were conducted on the rotor system based on SMA controllable stiffness support, and the maximum amplitude reduction rates reached 39.84% and 57.93% after passing the first and second critical speeds, respectively. This verified the effectiveness of the sup-port stiffness variation strategy for vibration suppression of the rotor system at critical speeds. 

关键词

转子 / 形状记忆合金 / 振动控制 / 变刚度 / 可控刚度支承

Key words

rotor / shape memory alloy / vibration control / variable stiffness / controllable stiffness support

引用本文

导出引用
马钰祥1, 臧朝平1, 邢广鹏2, 金福艺1, 袁善虎2, 贾志刚2. 基于SMA支承的转子振动控制方法与试验研究[J]. 振动与冲击, 2024, 43(18): 69-79
MA Yuxiang1, ZANG Chaoping1, XING Guangpeng2, JIN Fuyi1, YUAN Shanhu2, JIA Zhigang2. Rotor vibration control method and experiments based on SMA support[J]. Journal of Vibration and Shock, 2024, 43(18): 69-79

参考文献

[1] Zhuo M. Timescale competition dictates thermo-mechanical responses of NiTi shape memory alloy bars[J]. International Journal of Solids and Structures, 2020, 193: 601-617.
[2] 张光磊.智能材料与结构系统[M].北京:北京大学出版社, 2010.
ZHANG Guang-lei. Smart material and Structural Systems[M]. Beijing: Peking University Press, 2010.
[3] Tanaka K. Thermomechanical sketch of shape memory effect[J]. Res Mechanica: International Journal of Structural Mechanics and Materials Science, 1986, 18: 251.
[4] Liang C, Rogers C A. One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials[J]. Journal of Intelligent Material Systems & Structures, 2013, 1(2):207-234.
[5] Panico M, Brinson L C. A three-dimensional phenomenological model for martensite reorientation in shape memory alloys[J]. Journal of the Mechanics & Physics of Solids, 2007, 55(11):2491-2511.
[6] Damanpack A R, Bodaghi M, Aghdam M M, et al. On the vibration control capability of shape memory alloy composite beams[J]. Composite Structures, 2014, 110: 325-334.
[7] Cisse C, Zaki W, Ben ZT. A review of constitutive models and modeling techniques for shape memory alloys[J]. International Journal of Plasticity, 2016,2016(76): 244-284.
[8] 渠磊,闫泽红,饶智祥等.形状记忆合金在航空航天领域的应用研究综述[J].航空动力学报, 2022, 37(10):2127-2141.
QU Lei, YAN Ze-hong, RAO Zhi-xiang, et al. Review on shape memory alloys’ application in field of aerospace[J]. Journal of Aerospace Power, 2022, 37(10):2127-2141.
[9] 杨鑫,洪杰,马艳红等.SMA智能梁结构振动控制试验研究[J].航空学报, 2015, 36(07):2251-2259.
YANG Xin, HONG Jie, MA Yan-hong, et al. Test investigation on vibration control of intelligent beam with shape memory alloy[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(07):2251-2259.
[10] 洪杰,郑华强,杨鑫.形状记忆合金变刚度结构振动控制仿真研究[J].推进技术, 2018, 39(06):1369-1378.
HONG Jie, ZHENG Hua-qiang, YANG Xin. Simulation Study on Vibration Control of Variable Stiffness Structure with Shape Memory Alloy[J]. Journal of Propulsion Technology, 2018, 39(06):1369-1378.
[11] 竺致文,王洪礼,孙景.用形状记忆合金对转子振动进行变结构主动控制[J].天津大学学报, 2001(01):23-26.
ZHU Zhi-wen, WANG hong-li, SUN Jing. Study on variable structure active control over rotor vibration with SMA[J]. Journal of Tianjin University, 2001(01):23-26.
[12] 竺致文.用形状记忆合金对转子系统进行主动控制[D].天津大学, 2003.
ZHU Zhiwen. Active control to rotor vibration with SMA[D]. Tianjin University, 2003.
[13] 大井聪子,何永勇,褚福磊.基于形状记忆合金的转子系统振动控制[J].机械科学与技术, 2003(04):569-572.
Satoko Oi, HE Yong-yong, CHU Fu-lei. Rotor vibration control with shape memory alloy bearing[J]. Mechanical Science and Technology for Aerospace Engineering, 2003(04):569-572.
[14] Ma Y, Zhang Q, Zhang D, et al. Tuning the vibration of a rotor with shape memory alloy metal rubber supports[J]. Journal of Sound and Vibration, 2015, 351: 1-16.
[15] Alves M T S, Steffen Jr V, Castro dos Santos M, et al. Vibration control of a flexible rotor suspended by shape memory alloy wires[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(11): 2309-2323.
[16] Senko R, Almeida V S, Dos Reis R P B, et al. Passive Attenuation of Mechanical Vibrations with a Superelastic SMA Bending Springs: An Experimental Investigation[J]. Sensors, 2022, 22(9): 3195.
[17] 任勇生,杜成刚,刘养航.具有形状记忆合金弹簧支承的转子系统的动力稳定性研究[J].振动与冲击, 2016, 35(05):70-74.
REN Yong-sheng, DU Cheng-gang, LIU Yang-hang. Dynamic stability of a rotor-bearing system with shape memory alloy support[J]. Journal of Vibration and Shock, 2016, 35(05):70-74.
[18] Borges J M, Silva A A, de Araújo C J, et al. On the active control of a rotor-bearing system using shape memory alloy actuators: an experimental analysis[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40: 1-13.
[19] Oliveira A G, Silva A A, Carlos Jose de Araújo, et al. Design and experimental analysis of a smart bearing using shape memory alloy springs[J]. Journal of Intelligent Material Systems and Structures, 2020, 31(11):1390-1402.
[20] 周生通,张沛,肖乾等.单盘悬臂转子启动过程峰值响应全局灵敏度分析[J].振动与冲击, 2021,40(11):17-25.
ZHOU Sheng-tong, ZHANG Pei, XIAO Qian, et al. Global sensitivity for peak response of a cantilevered rotor with single disc during start-up[J]. Journal of Vibration and Shock, 2021,40(11):17-25.

PDF(3125 KB)

Accesses

Citation

Detail

段落导航
相关文章

/