海上风电桩基的振荡对其局部冲刷的影响不容忽视。本文采用VOF两相流模型,对横纵振荡的风电桩基进行数值模拟。分析不同频率、振幅下的桩前和桩侧对称面在周期内流场分布、马蹄涡系变化和床面剪切应力,探究振荡桩基对局部冲刷的影响机理。研究结果表明,在振荡周期内,纵向振荡桩基桩前对称面内产生回流,在T/2时刻马蹄涡达到最大且床面剪切应力最大,不改变桩侧对称面内水流流动;横向振荡桩基会延展桩侧马蹄涡系,在T/2时刻马蹄涡最大但床面剪切应力最小,T时刻最大,不改变桩前对称面内水流流动。横向、纵向振荡会增大桩前和桩侧的床面剪切应力,加剧局部冲刷,当A=5 mm、f=2 Hz时,纵向振荡桩前对称面剪切应力较静止约增大0.75%,桩侧对称面约增大7%;横向振荡桩前对称面约增大2.5%;桩侧对称面约增大10%。
Abstract
The impact of the oscillation of offshore wind power pile foundations on local scour cannot be ignored. This paper uses the VOF two-phase flow model to numerically simulate the horizontal and vertical oscillation of wind power pile foundations. Analyze the flow field distribution, horseshoe vortex system changes and bed surface shear stress of the pile front and pile side symmetry planes under different frequencies and amplitudes during the period, and explore the influence mechanism of the oscillating pile foundation on local scour. The research results show that during the oscillation period, the longitudinal oscillation pile foundation generates backflow in the front symmetry plane of the pile. At T/2 time, the horseshoe vortex reaches the maximum and the bed surface shear stress is the maximum, without changing the water flow in the pile side symmetry plane; transverse oscillation The pile foundation will extend the horseshoe vortex system on the pile side. The horseshoe vortex is the largest at time T/2 but the bed shear stress is the smallest. It is the largest at time T, which does not change the flow of water in the symmetry plane in front of the pile. Transverse and longitudinal oscillations will increase the bed shear stress in front of the pile and on the side of the pile, intensifying local scour. When A=5 mm, f=2 Hz, the shear stress in the front symmetry plane of the longitudinal oscillation pile increases by about 0.75% compared with the static state. The pile side symmetry plane increases by about 7%; the pile side symmetry plane increases by about 2.5%; the pile side symmetry plane increases by about 10%.
关键词
近海风电 /
冲刷 /
振荡 /
马蹄涡 /
剪切应力 /
{{custom_keyword}} /
Key words
Offshore wind turbine /
scour /
oscillation /
horseshoe vortex /
shear stress;
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Guan D, Xie Y, Yao Z, et al. Local scour at offshore windfarm monopile foundations: A review[J]. Water Science and Engineering, 2022, 15(1): 29-39.
[2] 陈琛,马宏旺,李玉韬,等. 冲刷对海上风电单桩基础自振频率影响的研究 [J]. 振动与冲击, 2020, 39 (22): 16-22.
CHEN Chen,MA Hongwang,LI Yutao,et al.Effects of scour on the natural frequency of offshore wind turbine structures[J]. Journal of Vibration and Shock, 2020, 39 (22): 16-22.
[3] de Brauwer C P S, Cohen J J. Analysing the potential of citizen-financed community renewable energy to drive Europe's low-carbon energy transition[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110300.
[4] 卢光坤,陈旭光,杜文博,等. 考虑桩-土作用及冲刷影响的海上风电结构损伤检测研究 [J]. 振动与冲击, 2023, 42 (1): 105-114.
LU Guangkun,CHEN Xuguang,DU Bowen,et al.Damage detection of offshore wind power structures considering pile-soil interaction and scour[J]. Journal of Vibration and Shock, 2023, 42 (1): 105-114.
[5] 代浩. 冲刷作用下钢管桩动力特性研究[D]. 东南大学, 2017.
Hao D. Research on dynamic characteristics of steel pipe piles under scouring[D]. Southeast University, 2017.
[6] 梁发云,王琛,贾承岳等. 冲刷深度对简支桥模态参数影响的模型试验 [J]. 振动与冲击, 2016, 35 (14): 145-150.
LIANG Fayun,WANG Chen,JIA Chengyue,et al.Model test on the influence of scour depth on modal parameters of simply supported bridge Journal of Vibration and Shock, 2016, 35 (14): 145-150.
[7] Li J, Guan D, Chiew Y M, et al. Temporal evolution of soil deformations around monopile foundations subjected to cyclic lateral loading[J]. Ocean Engineering, 2020, 217: 107893.
[8] Melville B W, Coleman S E. Bridge scour[M]. Water Resources Publication, 2000.
[9] Sheppard D M, Melville B, Demir H. Evaluation of existing equations for local scour at bridge piers[J]. Journal of Hydraulic Engineering, 2014, 140(1): 14-23.
[10] Ettema R, Constantinescu G, Melville B W. Flow-field complexity and design estimation of pier-scour depth: Sixty years since Laursen and Toch[J]. Journal of Hydraulic Engineering, 2017, 143(9): 03117006.
[11] Roulund A, Sumer B M, Fredsøe J, et al. Numerical and experimental investigation of flow and scour around a circular pile[J]. Journal of Fluid mechanics, 2005, 534: 351-401.
[12] Margheritini L, Martinelli L, Lamberti A, et al. Scour around monopile foundation for off-shore wind turbine in presence of steady and tidal currents[M]//Coastal Engineering 2006: (In 5 Volumes). 2007: 2330-2342.
[13] Sumer B M, Fredsøe J, Christiansen N. Scour around vertical pile in waves[J]. Journal of waterway, port, coastal, and ocean engineering, 1992, 118(1): 15-31.
[14] Sumer B M, Fredsøe J. Time scale of scour around a large vertical cylinder in waves[C]//ISOPE International Ocean and Polar Engineering Conference. ISOPE, 2002: ISOPE-I-02-143.
[15] Sumer B M, Fredsøe J. Scour around pile in combined waves and current[J]. Journal of hydraulic engineering, 2001, 127(5): 403-411.
[16] Sumer B M. The mechanics of scour in the marine environment[M]. World Scientific, 2002.
[17] Li J, Guan D, Chiew Y M, et al. Temporal evolution of soil deformations around monopile foundations subjected to cyclic lateral loading[J]. Ocean Engineering, 2020, 217: 107893.
[18] Guan D, Chiew Y M, Melville B W, et al. Current-induced scour at monopile foundations subjected to lateral vibrations[J]. Coastal Engineering, 2019, 144: 15-21.
[19] Al-Hammadi M, Simons R R. Local scour mechanism around dynamically active marine structures in noncohesive sediments and unidirectional current[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2020, 146(1): 04019026
[20] Menter F. Zonal two equation kw turbulence models for aerodynamic flows[C]//23rd fluid dynamics, plasma-dynamics, and lasers conference. 1993: 2906.
[21] De Vaal J B, Hansen M O L, Moan T. Effect of wind turbine surge motion on rotor thrust and induced velocity[J]. Wind Energy, 2014, 17(1): 105-121.
[22] Menter F R, Langtry R B, Likki S R, et al. A correlation-based transition model using local variables—part I: model formulation[J]. Journal of turbomachinery, 2006, 128(3): 413-422...
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}