基于PDEM的正交异性钢桥面板焊接节点时变疲劳可靠度评估

郝静1, 卢海林1, 2, 陈龙3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 87-95.

PDF(1954 KB)
PDF(1954 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (18) : 87-95.
论文

基于PDEM的正交异性钢桥面板焊接节点时变疲劳可靠度评估

  • 郝静1,卢海林1,2,陈龙3
作者信息 +

Time-dependent fatigue reliability assessment for welded joints of orthotropic steel bridge decks based on the probability density evolution method

  • HAO Jing1,LU Hailin1,2,CHEN Long3
Author information +
文章历史 +

摘要

提出了基于概率密度演化方法的正交异性钢桥面板焊接节点时变疲劳可靠度评估方法,并以润扬大桥顶板-U肋焊接节点为对象开展应用研究。首先,基于S-N曲线和Miner准则,构建了可同时考虑疲劳性能退化和荷载效应增长的钢桥面板焊接节点疲劳极限状态函数,并导出其概率密度演化方程。然后,采用有限差分法求解该方程,据此得到概率密度演化曲面,进而建立其时变疲劳可靠度评估方法。最后,通过工程实例验证了所提方法的可行性和准确性,并探讨了疲劳性能退化和荷载效应增长对该节点时变疲劳可靠度的影响规律。研究表明:与Monte Carlo法相比,本方法不仅精确高效,还能捕捉概率密度演化信息;疲劳性能退化和荷载效应增长会显著影响钢桥面板焊接节点的疲劳寿命。

Abstract

A time-dependent fatigue reliability assessment method based on probability density evolution method was proposed for the orthotropic steel deck with welded joints, and the application was presented with the examples of a welded rib-to-deck joint for Runyang Bridge. Firstly, based on the S-N curve and Miner’s rule, the fatigue limit state function of the welded joints in steel deck with consideration of the degradation of the fatigue behavior and growth of loading effects was established, and the probability density evolution equation of that was derived. Then, this equation was solved by the finite difference method to obtain the corresponding probability density evolution surface, and then a time-dependent fatigue reliability assessment method for that was established. Finally, the feasibility and accuracy of the proposed method was verified through an engineering example, and the influences of degradation of the fatigue behavior and growth of loading effects on time-dependent fatigue reliability of the welded joints were discussed. The results reveal that the proposed method possesses of preferable computational precision, efficiency, and can capture the probability density evolution information by comparison with Monte Carlo method. Degradation of the fatigue behavior and growth of loading effects significantly affect the fatigue life of the welded joints in orthotropic steel deck.

关键词

时变疲劳可靠度 / 正交异性钢桥面板 / 概率密度演化方法 / 疲劳性能退化 / 荷载效应增长

Key words

Time-dependent fatigue reliability / orthotropic steel deck / probability density evolution method / degradation of the fatigue behavior / growth of loading effects

引用本文

导出引用
郝静1, 卢海林1, 2, 陈龙3. 基于PDEM的正交异性钢桥面板焊接节点时变疲劳可靠度评估[J]. 振动与冲击, 2024, 43(18): 87-95
HAO Jing1, LU Hailin1, 2, CHEN Long3. Time-dependent fatigue reliability assessment for welded joints of orthotropic steel bridge decks based on the probability density evolution method[J]. Journal of Vibration and Shock, 2024, 43(18): 87-95

参考文献

[1] 张清华, 卜一之, 李  乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3): 14-39.
ZHANG Qing-hua, BU Yi-zhi, LI Qiao. Review on fatigue problems of orthotropic steel bridge deck [J]. China Journal of Highway and Transport, 2017, 30(3): 14-39. 
[2] 王春生, 翟慕赛, Houankpo Ton. 正交异性钢桥面板典型细节疲劳强度研究[J]. 工程力学, 2020, 37(8): 102-111.
WANG Chun-sheng, ZHAI Mu-sai, Houankpo Ton, et al. Fatigue structure of typical details in orthotropic steel bridge deck [J]. Engineering Mechanics, 2020, 37(8): 102-111.
[3] SHI Z C, SU Q T, KAVOURA F, et al. Fatigue behavior evaluation of full-scale OSD-UHPC composite bridge deck system [J]. Engineering Structures, 2023, 275(2023): 115179.
[4] 朱劲松, 郭耀华. 正交异性钢桥面板疲劳裂纹扩展机理及数值模拟研究[J]. 振动与冲击, 2014, 33(14): 40-47.
Zhu Jin-song, Guo Yao-hua. Numerical simulation on fatigue crack growth of orthotropic steel highway bridge deck [J]. Journal of Vibration and Shock, 2014, 33(14): 40-47.
[5] 吉伯海, 傅中秋, 王秋东, 等. 我国大跨径桥梁钢箱梁的养护技术发展及展望[J]. 工业建筑, 2018, 48(10): 1-9.
JI Bo-hai, FU Zhong-qiu, WANG Qiu-dong. Development and prospect of maintenance techniques for the steel box girder of long-span bridges in China [J]. Industrial Construction, 2018, 48(10): 1-9.
[6] SONG Y S, DING Y L, WANG G X, et al. Fatigue-life evaluation of a high-speed railway bridge with an orthotropic steel deck integrating multiple factors [J]. Journal of Performance of Constructed Facilities, 2016, 30(5): 04016036.
[7] 孟凡超, 张清华, 谢红兵, 等. 钢桥面板抗疲劳关键技术[M]. 北京: 人民交通出版社股份有限公司, 2018.
MENG Fan-chao, ZHANG Qing-hua, XIE Hong-bing, et.al. Key Technology for anti-fatigue of orthotropic steel bridge deck [M]. Beijing: China Communications Press Co., Ltd., 2018. 
[8] 张劲泉, 宋紫薇, 韩  冰, 等. 车辆荷载作用下公路混凝土桥梁疲劳问题研究进展[J]. 土木工程学报, 2022, 55(12): 65-79.
ZHANG Jin-quan, SONG Zi-wei HAN Bin, et al. Research progress on fatigue of highway concrete bridges under vehicle loading [J]. China Civil Engineering Journal, 2022, 55(12): 65-79. 
[9] Miner M A. Cumulative damage in fatigue Jour [J]. Journal of Applied Mechanics, 1945, 12(3): A159-A164.
[10] PARK Y S, HAN S Y, SUH B C. Fatigue reliability analysis of steel bridge welding member by fracture mechanics method [J]. Structural Engineering and Mechanics, 2005, 19(3): 347-359.
[11] 张海萍, 刘扬, 罗媛, 等. 基于非齐次复合Poisson过程的正交异性钢桥面板细节疲劳裂纹随机扩展研究[J]. 计算力学学报, 2022, 39(5): 614-622.
ZHANG Hai-ping, LIU Yang, LUO Yuan, et.al. Fatigue crack stochastic assessment of the orthotropic steel bridge deck based on Nonhomogeneous compound Poisson process model [J]. Chinese Journal of Computational Mechanics, 2022, 39(5): 614-622.
[12] YUAN D Y, CUI C, ZHANG Q H, et.al. Fatigue damage evaluation of welded joints in steel bridge based on meso-damage mechanics [J]. International Journal of Fatigue, 2022, 161: 106898.
[13] 贡金鑫, 仲伟秋, 赵国藩. 工程结构可靠性基本理论的发展与应用(2)[J]. 建筑结构学报, 2002, 23(5): 2-10.
GONG Jin-xin, ZHONG Wei-qiu, ZHAO Guo-fan. Developments and applications of reliability theories for engineering structures (2) [J]. Journal of Building Structures, 2002, 23(5): 2-10. 
[14] 李慧乐, 夏  禾. 基于车桥耦合随机振动分析的钢桥疲劳可靠度评估[J]. 工程力学, 2017, 34(2): 69-77.
LI Hui-le, XIA He. Fatigue reliability evaluation of steel bridges based on coupling random vibration analysis of train and bridge [J]. Engineering Mechanics, 2017, 34(2): 69-77.
[15] 李  游, 李传习, 陈卓异, 等. 基于监测数据的钢箱梁U肋细节疲劳可靠性分析[J]. 工程力学, 2020, 37(2): 111-123.
LI You, LI Chuan-xi, CHEN Zhuo-yi, et al. Fatigue reliability analysis of u-rib detail of steel box girder based on monitoring data [J]. Engineering Mechanics, 2020, 37(2): 111-123.
[16] FU B, ZHAO J N, LI B Q, et al. Fatigue reliability analysis of wind turbine tower under random wind load [J]. Structural Safety, 2020, 87: 1-10.
[17] LI J, CHEN J B. Stochastic dynamics of structures [M]. Singapore: John Wiley & Sons, 2009.
[18] 徐亚洲. 疲劳可靠度分析的概率密度演化方法[J]. 土木建筑与环境工程, 2013, 35(6): 67-72.
XU Ya-zhou. Fatigue reliability analysis based on probability density evolution method [J]. Journal of Civil, Architectural & Environmental Engineering, 2013, 35(6): 67-72.
[19] LI J, GAO R F. Fatigue reliability analysis of concrete structures based on physical synthesis method [J]. Probabilistic Engineering Mechanics, 2019, 56: 14-26.
[20] GAO K, LIU G. Novel nonlinear time-varying fatigue reliability analysis based on the probability density evolution method [J]. International Journal of Fatigue, 2021, 149: 1-12.
[21] WIRSCHING P H. Fatigue reliability for offshore structures [J]. Journal of Structural Engineering, 1984, 110: 2340-2356.
[22] 叶肖伟, 傅大宝, 倪一清, 等.考虑多因素共同作用的钢桥焊接节点疲劳可靠度评估[J]. 土木工程学报, 2013, 46(10): 89-99.
YE X W, FU D B, NI Y Q, et al. Fatigue reliability assessment of welded joints in steel bridges considering multiple effects [J]. China Civil Engineering Journal, 2013, 46(10): 89-99.
[23] 贡金鑫, 赵国藩. 腐蚀环境下钢筋混凝土结构疲劳可靠度的分析方法[J]. 土木工程学报, 2000, 33(6): 50-56.
GONG J X, ZHAO G F. Fatigue reliability analysis for corroded reinforced concrete structures [J]. China Civil Engineering Journal, 2000, 33(6): 50-56.
[24] 邓扬, 丁幼亮, 李爱群. 钢箱梁焊接细节基于长期监测数据的疲劳可靠性评估:疲劳可靠度指标[J]. 土木工程学报, 2012, 45(3): 86-181.
DENG Yang, DING You-liang, LI Ai-qun. Fatigue reliability assessment for welded details of steel box girders using long-term monitoring data: fatigue reliability indices [J]. China Civil Engineering Journal, 2012, 45(3): 86-181.
[25] 刘章军, 陈建兵, 彭勇波. 结构动力学[M]. 北京: 中国建筑工业出版社, 2021.
LIU Zhang-jun, CHEN Jian-bin, PENG Yong-bo. Structural dynamics [M]. Beijing: China Construction Industry Publishing House, 2021.
[26] 朱志辉, 刘禹兵, 高雪萌, 等. 概率密度演化方程差分格式的计算精度及初值条件改进[J]. 工程力学, 2022, 39(11): 13-21.
ZHU Zhi-hui, LIU Yu-bing, GAO Xue-meng, et.al. The calculation precision of probability density evolution equation difference scheme and the improvement of initial condition [J]. Engineering Mechanics, 2022, 39(11): 13-21.
[27] BS 5400 Part 10. Code of practice for fatigue [S]. London: British Standards Institution, 1982.

PDF(1954 KB)

153

Accesses

0

Citation

Detail

段落导航
相关文章

/