针对工业设备中轴承振动信号在噪声环境下故障分级诊断准确率低的问题,提出一种基于组稀疏学习与非洲秃鹫优化算法优化极端梯度提升树(African vultures optimization algorithm-extreme gradient boosting, AVOA-XGBoost)的轴承故障分级诊断方法。首先,利用组稀疏学习对轴承振动信号进行重构,以降低噪声水平并更有效地表征故障脉冲。然后,对重构后的信号提取时域、频域和熵值特征并构建特征集。最后,利用AVOA自适应优化XGBoost超参数以建立稳健的XGBoost模型,进而高效实现轴承故障分级诊断。实验结果表明,经过组稀疏学习重构的信号具备更强故障特征表示能力,相较于传统机器学习模型,采用AVOA-XGBoost模型进行分类能够取得更高准确率,所提方法能够有效诊断轴承故障类型及故障程度。
Abstract
In response to the challenge of low accuracy of bearing fault classification under strong background noises in industrial equipment, a bearing fault classification method based on group-sparsity learning and African vultures optimization algorithm-extreme gradient boosting (AVOA-XGBoost) is proposed. First, the bearing vibration signals are reconstructed using group-sparsity representation, which reduces the noise level and characterizes fault impulses more effectively. Then, time-domain, frequency-domain, and entropy features are extracted from the reconstructed signals and the feature set is constructed. Finally, the super parameters of XGBoost are adaptively adjusted by AVOA, which establishes a robust XGBoost for efficient bearing fault classification diagnosis. Experimental results demonstrate that the signals reconstructed by group-sparsity learning exhibit stronger fault characteristic representation, AVOA-XGBoost achieves higher classification accuracy compared with traditional machine learning models, and the proposed method can effectively diagnose the types and degrees of bearing faults.
关键词
轴承故障诊断 /
组稀疏学习 /
特征提取 /
非洲秃鹫优化算法 /
XGBoost
{{custom_keyword}} /
Key words
bearing fault diagnosis /
group-sparsity learning /
feature extraction /
African vulture optimization algorithm /
XGBoost
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Song L, Yan R. Bearing fault diagnosis based on cluster-contraction stage-wise orthogonal-matching-pursuit[J]. Measurement, 2019, 140: 240-253.
[2] Zhao D, Wang T, Chu F. Deep convolutional neural network based planet bearing fault classification[J]. Computers in Industry, 2019, 107: 59-66.
[3] Randall R B, Antoni J. Rolling element bearing diagnostics—a tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25(2): 485-520.
[4] Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and its algorithms[C]// Proceedings of the 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing. Grado: IEEE, 2003: 8-11.
[5] Peng Z K, Chu F L. Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography[J]. Mechanical Systems and Signal Processing, 2004, 18(2): 199-221.
[6] Antoni J. The spectral kurtosis: a useful tool for characterising non-stationary signals[J]. Mechanical Systems and Signal Processing, 2006, 20(2): 282-307.
[7] 刘建昌, 权贺, 于霞, 等. 基于参数优化 VMD 和样本熵的滚动轴承故障诊断[J]. 自动化学报, 2022, 48(3): 808-819.
Liu Jian-Chang, Quan He, Yu Xia, et al. Rolling bearing fault diagnosis based on parameter optimization VMD and sample entropy[J]. Acta Automatica Sinica, 2022, 48(3): 808-819.
[8] 韩争杰, 牛荣军, 马子魁, 等. 基于注意力机制改进残差神经网络的轴承故障诊断方法[J]. 振动与冲击, 2023, 42(16): 82-91.
Han Zheng-Jie, Niu Rong-Jun, Ma Zi-Kui, et al. Bearing fault diagnosis methods based on an attentional-mechanism improved residual neural network[J]. Journal of Vibration and Shock, 2023, 42(16): 82-91.
[9] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[10] Zhao Z, Wu S, Qiao B, et al. Enhanced sparse period-group lasso for bearing fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2018, 66(3): 2143-2153.
[11] Zheng K, Li T, Su Z, et al. Sparse elitist group lasso denoising in frequency domain for bearing fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 17(7): 4681-4691.
[12] Dai J, So H C. Group-sparsity learning approach for bearing fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2021, 18(7): 4566-4576.
[13] Han T, Zhang L, Yin Z, et al. Rolling bearing fault diagnosis with combined convolutional neural networks and support vector machine[J]. Measurement, 2021, 177: 109022.
[14] 刘东川, 邓艾东, 赵敏, 等. 基于改进深度森林的旋转机械故障诊断方法[J]. 振动与冲击, 2022, 41(21): 19-27.
Liu Dong-Chuan, Deng Ai-dong, Zhao Min, et al. Fault diagnosis method of rotating machinery based on improved deep forest model[J]. Journal of Vibration and Shock, 2022, 41(21): 19-27.
[15] 于飞, 樊清川, 宣敏. 结合振动特征优选和GWOA- XGBoost的电机轴承故障诊断[J]. 国防科技大学学报, 2023, 45(3): 99-107.
Yu Fei, Fan Qing-Chuan, Xuan Min. Motor bearing fault diagnosis by combining vibration feature optimization and GWOA-XGBoost[J]. Journal of National University of Defense Technology, 2023, 45(3): 99-107.
[16] Van Erven T, Harremos P. Rényi divergence and Kullback-Leibler divergence[J]. IEEE Transactions on Information Theory, 2014, 60(7): 3797-3820.
[17] Thom H C S. A note on the gamma distribution[J]. Monthly weather review, 1958, 86(4): 117-122.
[18] Chen T, Guestrin C. Xgboost: a scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. California: ACM, 2016: 785-794.
[19] Abdollahzadeh B, Gharehchopogh F S, Mirjalili S. African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers & Industrial Engineering, 2021, 158: 107408.
[20] Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series[J]. Physical Review Letters, 2002, 88(17): 174102.
[21] Chen W, Wang Z, Xie H, et al. Characterization of surface EMG signal based on fuzzy entropy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(2): 266-272.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}