为探究不同层理倾角复合岩体的动载响应特性,利用WDW-300E伺服压力试验机和分离式霍普金森杆(SHPB)试验系统对不同层理倾角的复合岩体进行压缩试验和动态冲击试验,基于静载结果对比了动力冲击下复合岩煤(R-C)和复合煤岩(C-R)的动态强度、能量耗散以及破坏模式。考虑到介质弹性模量和强度的非均质性,通过二次开发得到弹性损伤本构模型,最后建立了考虑复合岩体宏细观损伤的本构模型。试验、模拟和理论分析结果表明:在静载条件下随着层理角度的增加,复合岩体应力峰值表现出明显倒U型变化,其弹性模量逐渐增加而峰值应变在逐渐减小。动载作用下复合岩体R-C和C-R峰值应力、应变和能量耗散值随着角度的增加均表现为先减小后增大,复合岩体R-C的应力、能量耗散值和弹性模量值大于复合岩体C-R,而复合岩体R-C的应变值普遍小于复合岩体C-R。在动载冲击作用下复合岩体在层理倾角为0°和90°时破坏形式主要为劈裂拉伸,吸能率较高破碎块度相对较小,在30°、45°和60°则主要为剪切和拉伸混合破坏,吸能率较低破碎块度相对较大。利用弹性损伤本构模型再现了不同层理倾角下复合岩体内部损伤过程和能量演化。构建了同时考虑复合岩体宏细观损伤的本构模型,其与试验和模拟结果均可以较好的吻合,验证了构建模型的正确性。
Abstract
In order to investigate the dynamic response characteristics of composite rock with different joint dip angles, static compression test and dynamic impact test were carried out using WDW-300E servo pressure testing machine and SHPB test system. The dynamic compressive strength, energy dissipation and failure modes are compared between rock coal (R-C) and coal rock (C-R). Furthermore, considering the heterogeneity of elastic modulus and strength of the medium, the SHPB simulation system was constructed by DEM and secondary development was carried out. Finally, a constitutive model of composite rock was established considering joint dip angles. The results of test, simulation and theoretical analysis show that for the case of uniaxial compression test, with the increase of joint angle, the peak stress of composite rock shows obvious inverted U-shaped change, and the elastic modulus increases gradually while the peak strain decreases gradually. For the case of dynamic impact test, the peak stress, strain and energy dissipation values of composite rock under decrease first and then increase with the increase of angle. The stress, energy dissipation and elastic modulus of composite rock R-C are larger than that of composite rock C-R. However, the strain value of composite rock R-C is generally less than of composite rock C-R. The failure mode of composite rock with small dip angle and large dip angle is mainly splitting under dynamic impact, and the fracture fragmentation is relatively small with high energy absorption rate, while the fracture fragmentation is mainly shear and splitting mixed failure with low energy absorption rate. The energy accumulation and transformation process inside the composite rock were analyzed by SHPB simulation system, and the damage of the composite rock under impact was mainly concentrated on the coal side. A constitutive model of composite rock is constructed considering macro and micro damage, which is in good agreement with experimental and simulation results, verifying the correctness of the constructed model.
关键词
复合岩体 /
层理角度 /
动载破坏 /
本构开发 /
宏细观损伤
{{custom_keyword}} /
Key words
composite rock;joint angle;dynamic load failure;constitutive development /
Macro and micro damage
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 34(11): 2161-2178.
XIE He-ping, GAO Feng, JU Yang. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161-2178.
[2] 金解放,李夕兵,王观石等.循环冲击载荷作用下砂岩破坏模式及其机理[J].中南大学学报(自然科学版),2012,43(04):1453-1461.
Jin Jiefang, Li Xibing, WANG Guanshi,et al. Failure modes and mechanisms of sandstone under cyclic impact loadings[J]. Journal of Central South University(Science and Technology) ,2012,43(04):1453-1461.
[3] 康玉梅,谷今,魏梦琦.冲击荷载作用下软硬互层类岩石力学特性[J].中南大学学报(自然科学版),2023,54(03):1062-1073.
Kang Yumei, Gu Jin, Wei Mengqi. Mechanical properties of soft and hard interbedded rock under impact load[J]. Journal of Central South University (Science and Technology), 2023,54(03):1062-1073.
[4] 王磊,邹鹏,谢广祥等.冲击载荷下不同尺寸煤岩动力学分析及损伤特性研究[J].振动与冲击,2023,42(22):322-331.
WANG Lei, Zou Peng, Xie Guangxiang et al. Dynamic analysis and damage characteristics of coal rock with different sizes under impact loading[J]. Journal. of Vibration and Shock, 2023,42(22):322-331.
[5] 潘博,汪旭光,徐振洋,郭连军,李小帅.节理角度对岩石材料的动态响应影响研究[J].岩石力学与工程学报,2021,40(03):566-575.
PAN Bo,WANG Xu-Guang,XU Zhen-yang, et al. Research on the effect of joint angle on dynamic responses of rock materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2021,40 ( 3 ) : 566-575. (in Chinese)
[6] 左建平,谢和平,吴爱民,等. 深部煤岩单体及组合体的破坏机制与力学特性研究[J]. 岩石力学与工程学报,2011,30(1):84–92.
ZUO Jianping,XIE Heping,WU Aimin,et al. Investigation on failure mechanisms and mechanical behaviors of deep coal-rock single body and combined body[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(1):84–92.(in Chinese)
[7] 左建平, 陈岩, 崔凡. 不同煤岩组合体力学特性差异及冲击倾向性分析[J]. 中国矿业大学学报, 2018, 47(1): 81-87.
ZUO Jian-ping, CHEN Yan, CUI Fan. Investigation on mechanical properties and rock burst tendency of different coal-rock combined bodies[J]. Journal of China University of Mining & Technology, 2018, 47(1): 81-87.
[8] 刘 杰,王恩元,宋大钊,等. 岩石强度对于组合试样力学行为及声发射特性的影响[J]. 煤炭学报,2014,39(4):685–691.
LIU Jie,WANG Enyuan,SONG Dazhao,et al. Effects of rock strength on mechanical behavior and acoustic emission characteristics of samples composed of coal and rock[J]. Journal of China Coal Society,2014,39(4):685–691.(in Chinese)
[9] 李成杰, 徐颖, 冯明明, 等. 单轴荷载下类煤岩组合体变形规律及破坏机理[J]. 煤炭学报, 2020, 45(5):
1773-1782.
LI Cheng-jie, XU Ying, FENG Ming-ming, et al. Deformation law and failure mechanism of coal-rock-like combined body under uniaxial loading[J]. Journal of China Coal Society, 2020, 45(5): 1773-1782.
[10] 王兵武,李银平,杨春和,等. 界面倾角对复合层状物理模型材料力学特性的影响研究[J]. 岩土力学,2015,36( S2) : 139 -147.
WANG Bingwu,LI Yinping,YANG Chunhe, et al. Influences of interface inclination on mechanical properties of composite bedded physical model material[J]. Rock and Soil Mechanics,2015,36( S2) : 139-147.
[11] 苗磊刚,牛园园,石必明. 煤–岩–煤组合体冲击荷载作用下力学特性研究[J]. 采矿与安全工程学报,2018,35(6):1 217–1 224.
MIAO Leigang,NIU Yuanyuan,SHI Biming. Study on mechanical properties of coal-rock-coal composites under impact loading[J]. Journal of Mining and Safety Engineering,2018,35(6):1 217–1 224.(in Chinese)
[12] 李地元,韩震宇,孙小磊,等. 含预制裂隙大理岩SHPB 动态力学破坏特性试验研究[J]. 岩石力学与工程学报,2017,36(12):2 872–2 883.
LI Diyuan,HAN Zhenyu,SUN Xiaolei,et al. Characteristics of dynamic failure of marble with artificial flaws under split Hopkinson pressure bar tests[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(12):2 872–2 883.(in Chinese)
[13] 宫凤强,叶 豪,罗 勇. 低加载率范围内煤岩组合体冲击倾向性的率效应试验研究[J]. 煤炭学报,2017,42(11):2 852–2 860.
GONG Fengqiang,YE Hao,LUO Yong. Rate effect on the burst tendency of coal-rock combined body under low loading rate range[J]. Journal of China Coal Society,2017,42(11):2 852–2 860.(in Chinese)
[14] 谢和平,鞠 杨,黎立云,等. 岩体变形破坏过程的能量机制[J]. 岩石力学与工程学报,2008,27(9):1 729–1 740.
XIE Heping,JU Yang,LI Liyun,et al. Energy mechanism of deformation and failure of rock masses[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1 729–1 740.(in Chinese)
[15] 杨 磊,高富强,王晓卿,等. 煤岩组合体的能量演化规律与破坏机制[J]. 煤炭学报,2019,44(12):3 894–3 902.
YANG Lei,GAO Fuqiang,WANG Xiaoqing,et al. Energy evolution law and failure mechanism of coal-rock combined specimen[J]. Journal of China Coal Society,2019,44(12):3 894–3 902.(in Chinese)
[16] 刘少虹.动静加载下组合煤岩破坏失稳的突变模型和混沌机制 [J].煤炭学报,2014,39( 2) : 292-300.
LIU Shaohong.Catastrophe model and chaos mechanism of composite coal rock failure under dynamic and static loading[J].Journal of China Coal Society,2014,39( 2) : 292-300
[17] 李昂,邵国建,范华林,等.基于细观层次的软硬互层状复合岩体力学特性研究[J]. 岩石力学与工程学报,2014,33( Sl) : 3042-3049.
LI Ang,SHAO Guojian,FAN Hualin, et al.Investigation of mechanical properties of soft and hard interbedded composite rock mass based on meso-level heterogeneity[J].Chinese Journal of Rock Mechanics and Engineering,2014,33( Sl) : 3042-3049.
[18] 尹大伟,陈绍杰,陈 兵,等. 煤样贯穿节理对岩–煤组合体强度及破坏特征影响模拟研究[J]. 采矿与安全工程学报,2018,35(5):1 054–1 062.
YIN Dawei,CHEN Shaojie,CHEN Bing,et al. Simulation study on effects of coal persistent joint on strength and failure characteristics of rock-coal combined body[J]. Journal of Mining and Safety Engineering,2018,35(5):1 054–1 062.(in Chinese)
[19] 郭东明, 左建平, 张毅, 等. 不同倾角组合煤岩体的强度与破坏机制研究[J]. 岩土力学, 2011,32(5): 1333-1339.
GUO Dong-ming, ZUO Jian-ping, ZHANG yi, et al. Research on strength and failure mechanism of deep coal-rock combination bodies of different inclined angles[J]. Rock And Soil Mechanics, 2011,32(5): 1333-1339.
[20] 杨磊, 高富强, 王晓卿. 不同强度比组合煤岩的力学响应与能量分区演化规律[J]. 岩石力学与工程学报, 2020, 39(增刊 2): 3297-3305.
YANG Lei, GAO Fu-qiang, WANG Xiao-qing. Mechanical response and energy partition evolution of coal-rock combinations with different strength ratios[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Suppl. 2): 3297-3305.
[21] 刘红岩,张力民,苏天明,等. 节理岩体损伤本构模型及工程应用[M]. 北京:冶金工业出版社,2016:39–44.
LIU Hongoyan,ZHANG Limin,SU Tianming. Damage constitutive model of jointed rock mass and its engineering application[M]. Beijing:Metallurgical Industry Press,2016:39–44.(in Chinese)
[22] 刘红岩,吕淑然,张力民. 基于组合模型法的贯通节理岩体动态损伤本构模型[J]. 岩土工程学报,2014,36(10):1 814–1 821.
LIU Hongyan,LV Shuran,ZHANG Limin. Dynamic damage constitutive model for persistent jointed rock mass based on combination model method[J]. Chinese Journal of Geotechnical Engineering,2014,36(10):1 814–1 821.(in Chinese)
[23] 刘红岩,李俊峰,裴小龙. 单轴压缩下断续节理岩体动态损伤本构模型[J]. 爆炸与冲击,2018,38(2):316–323.
LIU Hongyan,LI Junfeng,PEI Xiaolong. A dynamic damage constitutive model for rockmass with intermittent joints under uniaxial compression[J]. Explosion and Shock Waves,2018,38(2):316–323.(in Chinese)
[24] 解北京,严 正. 基于层叠模型组合煤岩体动态力学本构模型[J].煤炭学报,2019,44(2):463–472.
XIE Beijing,YAN Zheng.Dynamic mechanical constitutive model of combined coal-rock mass based on overlay model[J]. Journal of China Coal Society,2019,44(2):463–472.(in Chinese)
[25] 宫凤强,王 进,李夕兵,等. 岩石压缩特性的率效应与动态增强因子统一模型[J]. 岩石力学与工程学报,2018,37(7):1 586–1 595.
GONG Fengqiang , WANG Jin , LI Xibin. The rate effect of compression characteristics and a unified model of dynamic increasing factor for rock materials[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(7):1 586–1 595. (in Chinese)
[26] 腾俊洋,唐建新,王进博,等. 层状复合岩体损伤演化规律及分形特征[J]. 岩石力学与工程学报,2018,37(增1):3 263–3 278.
TENG Junyang,TANG Jianxin,WANG Jinbo,et al. The evolution law of the damage of bedded composite rock and its fractal characteristics[J].Chinese Journal of Rock Mechanics and Engineering , 2018, 37(Supp.1):3 263–3 278.(in Chinese)
[27] 岳中文,宋 耀,陈 彪,等. 冲击载荷下层状岩体动态断裂行为的模拟试验研究[J]. 振动与冲击,2017,36(12):223–229.
YUE Zhongwen,SONG Yao,CHEN Biao,et al. A study on the behaviors of dynamic fracture in layered rocks under impact loading[J]. Journal of Vibration and Shock,2017,36(12):223–229.(in Chinese)
[28] 王雁冰,任斌,耿延杰等.软硬介质组合岩体冲击动力学特性研究[J].振动与冲击,2023,42(12):135-144.
Wang Yanbing, Ren Bin, GENG Yanjie, et al. A study on impact dynamic characteristics of soft and hard medium combined rock mass[J]. Journal of Vibration and Shock, 2023,42(12):135-144.
[29] 苗磊刚,牛园园,石必明.不同应变率下岩-煤-岩组合体冲击动力试验研究[J].振动与冲击,2019,38(17):137-143. Miao Leigang, Niu Yuanyuan, Shi Biming. Impact dynamic testsfor rock-coal-rock combination under different strain rates[J]. Journal of Vibration and Shock, 2019,38(17):137-143.)
[30] 宫凤强,李夕兵,饶秋华,等. 岩石SHPB 试验中确定试样尺寸的参考方法[J]. 振动与冲击,2013,32(17):24–28.
GONG Fengqiang,LI Xibing,RAO Qiuhua,et al. Reference method for determination of specimen size in rock SHPB test[J]. Vibration and Shock,2013,32(17):24–28.(in Chinese)
[31] DAI F,HUANG S,XIA K,et al. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar[J]. Rock Mechanics and Rock Engineering,2010,43(6):657–666.
[32] 蔡美峰,何满朝,刘东燕. 岩石力学与工程[M]. 北京:科学出版社,2013:120–125
CAI Meifeng,HE Manchao,LIU Dongyan.Rock mechanics and Engineering [M]. Beijing:Science Press,2013:120–125.(in Chinese)
[33] ZHAO Y X, ZHAO G F,JIANG Y D,et al. Effects of bedding on the dynamic indirect tensile strength of coal:Laboratory experiments and numerical simulation[J]. International Journal of Coal Geology,2014,132:81–93.
[34] LI Q M,MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids and Structures,2003,40(2):343–360.
[35] 夏昌敬,谢和平,鞠 杨,等. 冲击荷载下孔隙岩石能量耗散的实验研究[J]. 工程力学,2006,23(9):1–5.
XIA Changjing,XIE Heping,JU Yang,et al. Experimental study of energy dissipation of porous rock under impact loading[J]. Engineering Mechanics,2006,23(9):1–5.(in Chinese)
[36] 谢和平.分形—岩石力学导论[M].北京: 科学出版社,1996: 240.
XIE Heping,Fractal-introduction to rock mechanics[M]. Beijing:Science Press,1997:1.(in Chinese)
[37] 贾蓬,杨楠,刘冬桥等.组合岩石真三轴加卸荷条件下的破坏机理[J].中南大学学报(自然科学版),2021,52(08):2867-2875.
[38] Zhu WC, Tang CA. Micromechanical model for simulating the fracture process of rock. Rock Mech Rock Eng. 2004, 37(1): 25–56.
[39] TAO M, ZHAO H T, LI X B, et al. Failure characteristics and stress distribution of pre-stressed rock specimen with circular cavity subjected to dynamic loading[J]. Tunnelling and Under-ground Space Technology,2018,81:1-15.
[40] DENG J,GU D. On a statistical damage constitutive model for rock materials[J]. Computers and Geosciences,2011,37(2):122–128.
[41] 汪 杰,宋卫东,付建新. 考虑节理倾角的岩体损伤本构模型及强度准则[J]. 岩石力学与工程学报,2018,37(10):2 253–2 263.(WANG Jie,SONG Weidong,FU Jianxin. Damage constitutive model and strength criterion of rock mass considering joint dip angle[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(10):2 253–2 263.(in Chinese))
[42] 孙广忠. 岩体结构力学[M]. 北京:科学出版社,1988:216–221.
SUN Guangzhong. Structure mechanics of rock mass[M]. Beijing:Science Press,1988:216–221.(in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}