预浸碳化再生骨料混凝土的动态力学性能研究

刘超1, 3, 郝宏媛1, 刘立熙2, 朱超3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (19) : 117-125.

PDF(3412 KB)
PDF(3412 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (19) : 117-125.
论文

预浸碳化再生骨料混凝土的动态力学性能研究

  • 刘超1,3,郝宏媛1,刘立熙2,朱超3
作者信息 +

Test study on dynamic mechanical properties of pre-impregnated carbonized recycled aggregate concrete

  • LIU Chao1,3, HAO Hongyuan1, LIU Lixi2, ZHU Chao3
Author information +
文章历史 +

摘要

为研究再生骨料的预浸碳化处理方式及碳化循环次数对再生混凝土动态力学性能的影响,将强化后的再生骨料100%取代天然骨料制备再生混凝土试件,分别开展静、动态压缩试验。研究结果表明,静态加载时,预浸碳化组的抗压强度随碳化循环次数的增加而增大,而直接碳化组的抗压强度仅在第1次碳化循环后有所提升,继续进行碳化循环对再生混凝土强度的提升效果不明显。动态加载时,预浸碳化组再生混凝土呈现出明显的应变率强化效应,动态抗压强度与动态增加因子均随应变率的增大而提高,相较于普通再生混凝土,再生骨料预浸碳化循环3次后制备的再生混凝土试件动态抗压强度提升了23.8%,而直接碳化组仅提升了5.7%,且动态增加因子与应变率的对数存在良好的线性关系,随应变率的lg10线性增加;当应变率相同时,随着碳化循环次数的增加,动态抗压强度也增大。从能量的角度看,预浸碳化组在高应变率下的比能量吸收值大于低应变率下的比能量吸收值,再次说明了预浸碳化再生骨料混凝土仍具有应变率效应,相同应变率条件下,预浸碳化组的比能量吸收值大于直接碳化组,说明预浸碳化再生骨料提升了再生混凝土的抗冲击性能,且效果优于传统的直接碳化处理。上述研究也为预浸碳化强化再生骨料及再生混凝土在工程结构中的应用提供了可靠的试验结果和理论依据。 

Abstract

In order to study the effects of the pre-impregnated carbonation treatment of recycled aggregate and the number of carbonation cycles on the dynamic mechanical properties of recycled concrete, 100% of the strengthened recycled aggregate replaced natural aggregate to prepare recycled concrete specimens, and static and dynamic compression tests were carried out respectively. The results showed that, during static loading, the compressive strength of the pre-impregnated carbonation group increased with the increase of the number of carbonation cycles, while the compressive strength of the direct carbonation group increased only after the 1st carbonation cycle, and the effect of continuing carbonation cycles on the strength of recycled concrete was not obvious. During dynamic loading, the recycled concrete in the pre-impregnated carbonation group showed obvious strain rate strengthening effect, and the dynamic compressive strength and dynamic increase factor both increased with the increase of strain rate, compared with ordinary recycled concrete, the dynamic compressive strength of recycled concrete specimens prepared after 3 times of the pre-impregnated carbonation cycle of recycled aggregate increased by 23.8%, while that of the direct carbonation group increased by only 5.7%, and the dynamic increase factor and the strain rate There is a good linear relationship between the dynamic increase factor and the logarithm of the strain rate, which increases linearly with lg10 of the strain rate; when the strain rate is the same, the dynamic compressive strength increases with the increase in the number of carbonation cycles. From the energy point of view, the specific energy absorption value of the pre-impregnated carbonation group under high strain rate is larger than that under low strain rate, which again shows that the pre-impregnated carbonation recycled aggregate concrete still has the strain rate effect, and the specific energy absorption value of the pre-impregnated carbonation group is larger than that of the direct carbonation group under the condition of the same strain rate, which indicates that the pre-impregnated carbonation recycled aggregate enhances the impact resistance of the recycled concrete, and the effect is better than that of the traditional direct Carbonization. The above study also provides reliable experimental results and theoretical basis for the application of pre-impregnated carbonized reinforced recycled aggregates and recycled concrete in engineering structures.

关键词

再生粗骨料 / 预浸碳化 / 再生混凝土 / 动态力学性能

Key words

Recycled coarse aggregate / pre-impregnated carbonation / recycled concrete / dynamic mechanical properties

引用本文

导出引用
刘超1, 3, 郝宏媛1, 刘立熙2, 朱超3. 预浸碳化再生骨料混凝土的动态力学性能研究[J]. 振动与冲击, 2024, 43(19): 117-125
LIU Chao1, 3, HAO Hongyuan1, LIU Lixi2, ZHU Chao3. Test study on dynamic mechanical properties of pre-impregnated carbonized recycled aggregate concrete[J]. Journal of Vibration and Shock, 2024, 43(19): 117-125

参考文献

[1] GPDA A,GDCP A,MPB C,et al. Design of structural concrete mixtures containing fine recycled concrete aggregate using packing model - ScienceDirect[J]. Construction Building Materials,2020,252:119091.1-119091.11.
[2] Wang Y,Liu J,Zhu P H,et al. Investigation of Adhered Mortar Content on Recycled Aggregate Using Image Analysis Method[J]. Journal of Materials in Civil Engineering,2021,(9):33.
[3] 赵增丰,姚磊,肖建庄,等. 再生骨料CO2碳化强化技术研究进展 [J]. 硅酸盐学报,2022,50(08):2296-2304.
ZHAO Zeng-feng, YAO Lei, XIAO Jian-zhuang, et al.Development on Accelerated Carbonation Technology to Enhance Recycled Aggregates[J]. Journal of the chinese ceramic society,2022, 50(08): 2296-2304.
[4] Kong K F,Chen F,Xiao Y J,et al. Investigating particle breakage and compressibility characteristics of unbound aggregate materials recycled from building demolition wastes[J]. Journal of Central South University,2023,30(10):3499-3516.
[5] 王佃超,肖建庄,夏冰,等. 再生骨料碳化改性及其减碳贡献分析[J]. 同济大学学报:自然科学版,2022,50(11):1610-1619.
WANG Dian-chao, XIAO Jian-zhuang, XIA Bing, et al. Carbonation Modification of Recycled Aggregate and Carbon Dioxide Sequestration Analysis[J]. Journal of TongJi University(Nature Science),2022, 50(11): 1610-1619.
[6] 冯春花,黄益宏,崔卜文,等. 建筑再生骨料强化方法研究进展[J]. 建筑材料学报,2022,36(21):84-91.
FENG Chun-hua, HUANG Yi-hong, CUI Bu-wen, et al.Research progress on treatment methods of building recycled concrete aggregates [J]. Materials reports,2022, 36(21): 84-91.
[7] Li L K ,Liu Q,Huang T Y. Mineralization and utilization of CO2 in construction and demolition wastes recycling for building materials: A systematic review of recycled concrete aggregate and recycled hardened cement powder[J]. Separation and Purification Technology,2022,298:2-15.
[8] Fang X L,Xuan D X,Poon C S. Empirical modelling of CO2 uptake by recycled concrete aggregates under accelerated carbonation conditions[J]. Materials Structures,2017,50(4):200.
[9] Wang J G,Zhang J X,Cao D D,et al. Comparison of recycled aggregate treatment methods on the performance for recycled concrete[J]. Construction Building Materials,2020,234:117366.
[10] Al-Waked Q,Bai J P,Kinuthia J,et al. Enhancing the aggregate impact value and water absorption of demolition waste coarse aggregates with various treatment methods[J]. Case Studies in Construction Materials,2022,17:01267.
[11] Xiao J Z,Li L,Shen L M,et al. Compressive behaviour of recycled aggregate concrete under impact loading[J]. Cement Concrete Research,2015,71:46-55.
[12] Wang X G,Cheng F,Wang Y X,et al. Impact Properties of Recycled Aggregate Concrete with Nanosilica Modification[J]. Advances in Civil Engineering,2020,2020(8):8878368.1-8878368.10.
[13] 郭远新. 基于再生骨料品质和取代率的再生混凝土配合比设计方法研究[D]. 青岛理工大学,2018.
[14] Yang L Y,Zhang F,Xie H Z,et al. Dynamic Mechanical Properties of Red Sandrock-Polypropylene Fiber Reinforced Concrete Composite under Impact Load[J]. KSCE journal of civil engineering,2022,36(3):1479-1493.
[15] Wang S S,Zhang M H,Quek S T. Effect of Specimen Size on Static Strength and Dynamic Increase Factor of High-Strength Concrete from SHPB Test[J]. Journal of Testing and Evaluation,2011,39(5):898-907.
[16] 任亮,何瑜,王凯. 基于整形器的UHPC材料SHPB试验数值模拟与分析[J]. 振动与冲击,2019,38(21):44-52.
REN Liang, HE Yu, WANG Kai. Numerical simulation and analysis of SHPB test for UHPC material based on shaper[J]. Journal of vibration shock,2019, 38(21): 44-52.
[17] Yang L Y,Zhang F,Xie H Z,et al. Dynamic Mechanical Properties of Red Sandrock-Polypropylene Fiber Reinforced Concrete Composite under Impact Load[J]. journal of civil engineering,2022,26(3):1479-1493.
[18] 张春生,李雅婧,丁亚红,等. 预浸石灰水碳化再生粗骨料混凝土的力学性能[J]. 建筑材料学报,2022,25(11):1143-1150.
ZHANG Chun-sheng, LI Ya-jing, DING Ya-hong, et al.Mechanical Properties of Recycled Coarse Aggregate Concrete with Pre-soaking in Lime Water and Carbonated Aggregates[J]. Journal of Building Materials,2022, 25(11): 1143-1150.
[19] 武军. 碳化骨料再生混凝土力学性能及界面过渡区研究[D]. 河南理工大学,2022.
[20] 王兴国,姜茂林,陈旭,等. 不同预浸骨料-PVA纤维对再生混凝土力学性能的影响[J]. 复合材料学报,2022,39(3):1205-1214.
WANG Xing-guo, JIANG Mao-lin, CHEN Xu, et al. Effect of different pre-soaked aggregate-PVA fiber on the mechanical properties of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica ,2022, 39(3): 1205-1214.
[21] 彭帅,李亮,吴俊,等. 高温条件下钢纤维混凝土动态抗压性能试验研究[J]. 振动与冲击,2019,38(22):149-154.
PENG Shuai, LI Liang, WU Jun, et al.Impact tests on dynamic compressivebehaviors of steel fiber reinforced concrete at elevated temperature[J]. Journal of Vibration Shock,2019, 38(22): 149-154.
[22] 罗银剑,李秀地,蔡涛,等. ECC冲击压缩力学特性及耗能机制的试验研究[J]. 振动与冲击,2023,42(04):19-27+64.
LUO Yin-jian, LI Xiu-di, CAI Tao, et al.An experimental study on the mechanical properties of shock compression and energy consumption mechanism of ECC[J]. Journal of Vibration and Shock,2023, 42(04): 19-27+64.
[23] 王永贵,李帅鹏,Peter H,等. 改性再生混凝土动力性能研究[J]. 振动与冲击,2021,40(23):269-278+287.
WANG Yong-gui, LI Shuai-peng, Peter H, et al. Dynamic performance of modified recycled concrete[J]. Journal of Vibration and Shock,2021, 40(23): 269-278+287.
[24] 徐福卫,田斌,徐港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报,2022,36(4):118-124.
XU Fu-wei, TIAN Bing, XU Gang. Influence Analysis of Interface Transition Zone Thickness on the Damage Performance of Recycled Concrete[J]. Materials Reports,2022, 36(4): 118-124.
[25] 刘琼,肖建庄,潘智生,等. 废混凝土骨料和废砖骨料再生混凝土的模型化研究[J]. 建筑结构学报,2020,41(12):133-140.
LIU Qiong, XIAO Jian-zhuang, PAN Zhi-sheng, et al. Investigation on modeled recycled concrete prepared with recycled concrete aggregate and recycled brick aggregate[J]. Journal of Building Structures,2020, 41(12): 133-140.
[26] Zhan B J,Xuan D X,Poon C S. Characterization of interfacial transition zone in concrete prepared with carbonated modeled recycled concrete aggregates[J]. Cement Concrete Research,2020,136:106175-106175.
[27] 李晓琴,廖俊智,陈建飞,等. 混凝土动态力学行为数值模拟研究[J]. 工程力学,2023,1-12.
LI Xiao-qing, LIAO Jun-zhi, CHEN Jian-fe, et al. Numerical analysis on dynamic mechanical behavior of concrete [J]. Engineering Mechanics,2023, 1-12.
[28] Ying L P,Peng Y J,Yang H M. Meso-Analysis of Dynamic Compressive Behavior of Recycled Aggregate Concrete Using BFEM[J]. International Journal of Computational Methods,2019,17(2):1950013.
[29] 周剑,石立,邓文婷,等. 再生混凝土动态冲击性能[J]. 科学技术与工程,2022,22(35):15727-15734.
ZHOU Jian, SHI Li, DENG Wen-ting, et al. Dynamic Impact Properties of Recycled Aggregate Concrete[J]. Science Technology and Engineering,2022, 22(35): 15727-15734.
[30] Wu Z,Shi C,He W,et al. Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements[J]. Cement and Concrete Composites,2017,79:148-157.
[31] Lothenbach B,Saout G L,Gallucci E,et al. Influence of limestone on the hydration of Portland cements[J]. Cement Concrete Research,2008,38(6):339-356.
[32] Ouyang Y Y, Guang Surface characterization of carbonated recycled concrete fines and its effect on the rheology, hydration and strength development of cement paste[J]. Cement concrete composites,2020,114(1).
[33] 王国盛,路德春,杜修力,等. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学,2018,35(6):10.
WANG Guo-sheng, LU De-chun, DU Xiuli, et al. Research on the actual dynamic strength and rate mechanisms for concrete materials [J]. Engineering mechanics,2018, 35(6): 10

PDF(3412 KB)

104

Accesses

0

Citation

Detail

段落导航
相关文章

/