基于边缘线追踪的斜拉桥拉索振动频率识别

薛浩, 彭珍瑞, 殷红

振动与冲击 ›› 2024, Vol. 43 ›› Issue (19) : 153-162.

PDF(3331 KB)
PDF(3331 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (19) : 153-162.
论文

基于边缘线追踪的斜拉桥拉索振动频率识别

  • 薛浩,彭珍瑞,殷红
作者信息 +

Identification of cable vibration frequency for cable-stayed bridge based on edge line tracking

  • XUE Hao, PENG Zhenrui, YIN Hong
Author information +
文章历史 +

摘要

针对传统频率法在斜拉桥拉索频率识别中存在传感器布置困难、检测效率低、实现成本高的问题,提出基于拉索边缘线追踪的方法,借助智能手机采集的拉索振动视频,开展了复杂工况下的斜拉桥拉索振动频率识别。首先,引入大津法计算图像感兴趣区域(Region of Interest, ROI)阈值,利用阈值自适应的Canny-Hough算子进行拉索亚像素边缘检测,定位拉索边缘线的亚像素位置。其次,计算边缘线相对于ROI原点的距离得到拉索振动位移,将位移信号进行逐次变分模态分解(Successive Variational Mode Decomposition, SVMD)以减少相机振动和其他噪声的干扰。最后,将降噪后的位移信号进行傅里叶变换识别拉索振动频率。对斜拉桥模型和户外人行桥斜拉索进行试验测试,结果表明即使在复杂工况下,所提方法仍可有效识别拉索的振动频率。

Abstract

To address the challenges of complex sensor placement, low detection efficiency, and high implementation costs associated with traditional frequency methods for identifying cable-stayed bridges, a cable edge tracking method is proposed. The video of cable vibration under complex working conditions can be collected using a smartphone. This research focuses on identifying the vibration frequency of the cables in a cable-stayed bridge. Firstly, the threshold of the region of interest (ROI) in the image is calculated using Otsu's method. Sub-pixel edge detection is carried out on the cables using the Canny-Hough operator with adaptive threshold, which helps locate the sub-pixel position of the edge lines of the cables. Secondly, the change in distance of the edge line from the ROI origin is calculated to obtain the cables vibration displacement. This displacement signal is then processed using Successive Variational Mode Decomposition (SVMD) to minimize interference from camera vibration and other noises. Finally, the denoised displacement signal is Fourier transformed to identify the vibration frequency of the cable. Experimental tests were conducted on cable-stayed bridge models and outdoor pedestrian bridge cables. The results demonstrate that the proposed method is effective in identifying the vibration frequency of the cable-stayed cables even under complex working conditions.

关键词

斜拉桥 / 边缘线追踪 / 边缘检测 / 拉索振动 / 逐次变分模态分解

Key words

cable-stayed bridge / edge line tracing / edge detection / cable vibration / successive variational mode decomposition

引用本文

导出引用
薛浩, 彭珍瑞, 殷红. 基于边缘线追踪的斜拉桥拉索振动频率识别[J]. 振动与冲击, 2024, 43(19): 153-162
XUE Hao, PENG Zhenrui, YIN Hong. Identification of cable vibration frequency for cable-stayed bridge based on edge line tracking[J]. Journal of Vibration and Shock, 2024, 43(19): 153-162

参考文献

[1] ZHANG L, QIU G, CHEN Z. Structural health monitoring methods of cables in cable-stayed bridge: A review [J]. Measurement, 2021, 168: 108343.
[2] 吴康雄, 刘克明, 杨金喜. 基于频率法的索力测量系统 [J].中国公路学报, 2006: 19(2): 62-66.
WU Kangxiong, LIU Keming, YANG Jinxi. Measuring system of cable tension based on frequency method [J]. China Journal of Highway and Transport, 2006, 19(2): 62-66.
[3] 叶肖伟, 董传智. 基于计算机视觉的结构位移监测综述 [J]. 中国公路学报, 2019, 32(11): 21-39.
YE Xiaowei, DONG Chuanzhi. Review of computer vision-based structural displacement monitoring [J]. China Journal of Highway and Transport, 2019, 32(11): 21-39.
[4] SMEULDERS A W M, CHU D M, CUCCHIARA R, et al. Visual tracking: An experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 36(7): 1442-1468.
[5] FENG D, SCARANGELLO T, FENG M Q, et al. Cable tension force estimate using novel noncontact vision-based sensor [J]. Measurement, 2017, 99: 44-52.
[6] 左文生, 张权, 刘畅,等. 基于亚像素角点检测技术的桥梁拉索索力监测研究 [J].公路交通科技, 2023, 40(3): 69-75.
ZUO Wensheng, ZHANG Quan, LIU Chang, et al. study on monitoring of bridge cable force based on sub-pixel corner detection technology [J]. Journal of Highway and Transportation Research and Development,2023, 40(3): 69-75.
[7] DU W, LEI D, BAI P, et al. Dynamic measurement of stay-cable force using digital image techniques [J]. Measurement, 2020, 151: 107211.
[8] XIE K, LEI D, DU W, et al. A new operator based on edge detection for monitoring the cable under different illumination [J]. Mechanical Systems and Signal Processing, 2023, 187: 109926.
[9] CANNY J. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986(6): 679-698
[10] 谢鵾, 雷冬, 杜文康,等. 不同激励下基于边缘检测方法的多根拉索振动频率的同步测量 [J].实验力学, 2022, 37(1): 41-51.
XIE Kun, LEI Dong, DU Wenkang, et al. Determination of optimal point for stay-cable vibration measurement by edge detection [J]. Journal of Experimental Mechanics, 2022, 37(1): 41-51.
[11] 张宇航, 苏成, 邓逸川. 基于欧拉运动放大算法的桥梁索力测试方法研究 [J]. 图学学报, 2021, 42(6): 941-947.
ZHANG Yuhang, SU Cheng, DENG Yichuan. A eulerian video magnification based cable tension identification method for bridge structures [J]. Journal of Graphics, 2021, 42(6): 941-947.
[12] 韩怡天, 冯东明, 吴刚. 基于机器视觉与无人机的结构动位移测量方法 [J]. 振动与冲击, 2022, 41(19): 1-7.
HAN Yitian, FENG Dongming, WU Gang. Measurement method of structural dynamic displacement based on machine vision and UAV [J]. Journal of Vibration and Shock, 2022, 41(19): 1-7.
[13] MUKHOPADHYAY P, CHAUDHURI B B. A survey of Hough Transform[J]. Pattern Recognition, 2015, 48(3): 993-1010.
[14] JIANG T, FROSETH G T, RONNQUIST A, et al. A robust line-tracking photogrammetry method for uplift measurements of railway catenary systems in noisy backgrounds [J]. Mechanical Systems and Signal Processing, 2020, 144: 106888.
[15] LUO K, KONG X, WANG X, et al. Cable vibration measurement based on broad-band phase-based motion magnification and line tracking algorithm[J]. Mechanical Systems and Signal Processing, 2023, 200: 110575. 
[16] WANG W, CUI D, AI C, et al. Target-free recognition of cable vibration in complex backgrounds based on computer vision [J]. Mechanical Systems and Signal Processing, 2023, 197: 110392.
[17] MA Z, CHOI J, SOHN H. Noncontact cable tension force estimation using an integrated vision and inertial measurement system [J]. Measurement, 2022, 199: 111532.
[18] 朱前坤, 崔德鹏, 刘艺, 等.基于计算机视觉的复杂背景人行桥振动识别 [J].土木工程学报, 2023, 56(6): 75-86.
ZHU Qiankun, CUI Depeng, LIU Yi, et al. Computer vision-based vibration recognition of pedestrian bridges with complex backgrounds [J]. China Civil Engineering Journal, 2023, 56(6): 75-86.
[19] MOJTABAN, SAYED M S. Successive variational mode decomposition [J]. Signal Processing, 2020, 174(3): 107610.
[20] MISRA I, ROHIL M K, MANTHIRA MOORTHI S, et al. Feature based remote sensing image registration techniques: a comprehensive and comparative review [J]. International Journal of Remote Sensing, 2022, 43(12): 4477-4516.
[21] OTSU N. A threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.
[22] Ma G, Yue X. An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method[J]. Engineering Applications of Artificial Intelligence, 2022, 113: 104960.
[23] MONICKA S G, MANIMEGALAI D, KARTHIKEYAN M. Detection of microcracks in silicon solar cells using Otsu-Canny edge detection algorithm[J]. Renewable Energy Focus, 2022, 43: 183-190.
[24] CARLSON R E, FRITSCH F N. Monotone piecewise bicubic interpolation[J]. Siam Journal on Numerical Analysis, 1985, 22(2): 386-400.
[25] YU S, ZHANG J, SU Z, et al. Fast and robust vision-based cable force monitoring method free from environmental disturbances [J]. Mechanical Systems and Signal Processing, 2023, 201: 110617.
[26] SYAMSI M I, WANG C Y, NGUYEN V S. Tension force identification for cable of various end-restraints using equivalent effective vibration lengths of mode pairs[J]. Measurement, 2022, 197: 111319.
[27] HOU Z J, WEI G W. A new approach to edge detection[J]. Pattern Recognition, 2002, 35(7): 1559-1570.

PDF(3331 KB)

Accesses

Citation

Detail

段落导航
相关文章

/