基于滑动窗宽优化的LMSSGST识别非平稳信号瞬时频率

刘景良1, 2, 苏杰龙1, 戴逸宸1, 李宇祖1, 黄永2, 郑文婷3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (19) : 183-195.

PDF(3561 KB)
PDF(3561 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (19) : 183-195.
论文

基于滑动窗宽优化的LMSSGST识别非平稳信号瞬时频率

  • 刘景良1,2,苏杰龙1,戴逸宸1,李宇祖1,黄永2,郑文婷3
作者信息 +

Recognition of non-stationary signal instantaneous frequency withLMSSGST based on sliding window width optimization

  • LIU Jingliang1,2, SU Jielong1, DAI Yichen1, LI Yuzu1, HUANG Yong2, ZHENG Wenting3
Author information +
文章历史 +

摘要

为提高非平稳响应信号瞬时频率的识别效果,提出基于滑动窗宽优化的局部最大同步挤压广义S变换(Local Maximum Synchrosqueezing Generalized S-Transform, LMSSGST)。该方法首先对非平稳响应信号进行广义S变换获得相应的时频系数;其次,利用该响应信号的功率谱密度特征曲线确定局部最大同步挤压算子中滑动窗的宽度;再次,通过局部最大同步挤压算子进行时频重排;最后,采用模极大值改进算法提取瞬时频率曲线。通过两个数值算例、一个滑动窗宽参数分析和一个时变拉索试验验证了所提方法的有效性,研究结果表明:利用功率谱密度特征曲线能够有效确定滑动窗的窗宽和模极大值算法的提取范围。相比局部最大同步挤压变换算法,基于滑动窗宽优化的LMSSGST具有更佳的瞬时频率识别效果。

Abstract

In order to improve the identification effect of instantaneous frequency from non-stationary response signals, the sliding window width optimization based local maximum synchrosqueezing generalized S-transform (LMSSGST) method is proposed. In this method, the generalized S-transform is performed on the non-stationary response signal at first. Subsequently, the length of the sliding window embedded in the local maximum synchrosqueezing operator is optimized by solving the power spectral density characteristic curve of the target signal. After that, the local maximum synchrosqueezing operator is used to reassign the time-frequency coefficients. Finally, the instantaneous frequency curves can be extracted by the improved modulus maximum method. Two numerical cases, a parameter analysis on sliding window width and a time-varying cable test are investigated to verify the effectiveness and accuracy of the proposed method. The results demonstrate that the index of the power spectral density characteristic curve is beneficial for the selection of the sliding window length and the extraction range of the improved modulus maximum method. Moreover, the sliding window width optimization based LMSSGST method behaves better on instantaneous frequency identification when compared with the current local maximum synchrosqueezing transform algorithm.

关键词

瞬时频率 / 广义S变换 / 局部最大同步挤压变换 / 时变结构 / 功率谱密度

Key words

instantaneous frequency; generalized S-transform / local maximum synchrosqueezing transform; time-varying structures; power spectral density

引用本文

导出引用
刘景良1, 2, 苏杰龙1, 戴逸宸1, 李宇祖1, 黄永2, 郑文婷3. 基于滑动窗宽优化的LMSSGST识别非平稳信号瞬时频率[J]. 振动与冲击, 2024, 43(19): 183-195
LIU Jingliang1, 2, SU Jielong1, DAI Yichen1, LI Yuzu1, HUANG Yong2, ZHENG Wenting3. Recognition of non-stationary signal instantaneous frequency withLMSSGST based on sliding window width optimization[J]. Journal of Vibration and Shock, 2024, 43(19): 183-195

参考文献

[1] 王佐才,任伟新,邢云斐. 基于解析模态分解的时变与弱非线性结构密集模态参数识别[J]. 振动与冲击,2014,33(19):1-7.
WANG Zuo-cai, REN Wei-xin, XING Yun-fei. Analytical modal decomposition-based time-varying and weakly nonlinear structures' modal parametric identification with closely-spaced modes [J]. Journal of Vibration and Shock, 2014, 33(19): 1-7.
[2] Wang J K, Huo L S, Liu C G, et al. A new acoustic emission damage localization method using synchrosqueezed wavelet transforms picker and time-order method[J]. Structural Health Monitoring, 2021, 20(6): 2917-2935.
[3] 王超,朱宏平. 基于广义Morse小波和EWT的移动荷载下结构时变频率识别[J]. 振动与冲击,2020,39(1):24-28.
WANG Chao, ZHU Hong-ping. Structural time-varying frequency identification under moving load based on generalized Morse wavelet and EWT [J]. Journal of Vibration and Shock, 2020, 39(1): 24-28.
[4] Xin Y, Hao H, Li J. Time-varying system identification by enhanced empirical wavelet transform based on synchroextracting transform[J]. Engineering Structures, 2019, 196: 109313.
[5] 陈雨红,杨长春,曹齐放,等. 几种时频分析方法比较[J]. 地球物理学进展,2006,21(4): 1180-1185.
CHEN Yu-hong, YANG Chang-chun, CAO Qi-fang, et al. The comparison of some time-frequency analysis methods [J]. Progress in Geophysics, 2006, 21(4): 1180-1185.
[6] Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum: the S transform[J]. IEEE Transactions on Signal Processing, 1996, 44(4): 998-1001.
[7] 尉佳,岳龙,杨睿,等. 基于改进的广义S变换的海洋地震资料随机噪音压制[J]. 海洋地质与第四纪地质,2022,42(3):184-193.
WEI Jia, YUE Long, YANG Rui, et al. Random noise suppression of marine seismic data based on improved generalized S transform [J]. Marine Geology and Quaternary Geology, 2022, 42(3): 184-193.
[8] 陈学华,贺振华,黄德济,等. 时频域油气储层低频阴影检测[J]. 地球物理学报,2009,52(1):215-221.
CHEN Xue-hua, HE Zhen-hua, HUANG De-ji, et al. Low frequency shadow detection of gas reservoirs in time-frequency domain [J]. Chinese Journal of Geophysics, 2009, 51(1): 215-221.
[9] Daubechies I, Lu J F, Wu H T. Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool[J]. Applied and Computation Harmonic Analysis, 2011, 30(2): 243-261.
[10] 王超,朱宏平,艾德米. 基于同步挤压小波变换的结构时变参数识别[J]. 华中科技大学学报(自然科学版),2017,45(11):46-50.
WANG Chao, ZHU Hong-ping, AI De-mi. Structural time-varying parameter identification based on synchrosqueezed wavelet transform [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(11): 46-50.
[11] 刘景良,郑锦仰,林友勤,等. 变分模态分解和同步挤压小波变换识别时变结构瞬时频率[J]. 振动与冲击,2018,37(20):24-31.
LIU Jing-liang, ZHENG Jin-yang, LIN You-qin, et al. Instantaneous frequency identification of time-varying structures using variationalmode decomposition and synchrosqueezing wavelet transform [J]. Journal of Vibration and Shock, 2018, 37(20): 24-31
[12] 黄忠来,张建中. 同步挤压S变换[J]. 中国科学:信息科学,2016,46(5):643-650. 
HUANG Zhong-lai, ZHANG Jian-zhong. Synchrosqueezing S-transform [J]. Scientia Sinica Informationis, 2016, 46(5): 643-650.
[13] Yu G, Yu M J, Xu C Y. Synchroextracting transform[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8042-8054. 
[14] 胡志峰,李志农,朱彤,等. 基于同步提取变换的滚动轴承微弱特征增强与提取方法[J]. 兵器装备工程学报,2021,42(2):234-238.
HU Zhi-feng, LI Zhi-nong, ZHU Tong, et al. Weak feature enhancement and extraction method of rolling bearing based on synchronousextraction transformation [J]. Chinese Journal of Weaponry and Equipment Engineering, 2021, 42(2): 234-238.
[15] Shi Z J, Yang X, Li Y Y, et al. Wavelet-based synchroextracting transform: an effective TFA tool for machinery fault diagnosis[J]. Control Engineering Practice, 2021, 114: 104884.
[16] 唐蕾,黄天立,万熹. 基于变分模态分解和同步提取变换识别时变结构瞬时频率[J]. 振动与冲击,2022,41(6):197-205. 
TANG Lei, HUANG Tian-li, WAN Xi. Instantaneous frequency identification of time-varying structures using variational mode decomposition and synchroextracting transform [J]. Journal of Vibration and Shock, 2022, 41(6): 197-205.
[17] Yu G, Wang Z H, Zhao P, et al. Local maximum synchrosqueezing transform: an energy-concentrated time-frequency analysis tool[J]. Mechanical Systems and Signal Processing, 2019, 117: 537-552.
[18] 王航航,张健,袁平平,等. 基于改进同步提取GST的结构瞬时频率识别[J]. 振动、测试与诊断,2022,42(3):543-548.
WANG Hang-hang, ZHANG Jian, YUAN Ping-ping, et al. Structural instantaneous frequency identification based on improved synchroextracting generalized S transform [J]. Journal of Vibration, Measurement and Diagnosis, 2022, 42(3): 543-548.
[19] 潘高元,李舜酩,安增辉,等. 滚动轴承冲击特征提取的同步挤压S变换方法[J]. 振动工程学报,2020,33(2):433-440.
PAN Gao-yuan, LI Shun-ming, AN Zeng-hui, et al. Impact feature extraction from rolling bearing fault signal by synchrosqueezed S-transform [J]. Journal of Vibration Engineering, 2020, 33(2): 433-440.
[20] 郝春月,郑重,张爽. 玉树地震前后当地的噪声变化研究[J].地球物理学进展,2012,27(6): 2418-2428.
HAO Chun-yue, ZHENG Zhong, ZHANG Shuang. Research about noise variation around YUS station before and after the Yushu Earthquake [J]. Progress in Geophysics, 2012, 27(6): 2418-2428.
[21] 柯伟,金仲平,吕信策,等. 二阶同步提取Chirplet变换及应用于变转速滚动轴承故障诊断[J]. 机床与液压,2022,50(14):176-181.
KE Wei, JIN Zhong-ping, LYV Xin-ce, et al. Second-order synchroextracting chirplet transform and its application to the fault diagnosis of variable speed rolling bearing [J]. Machine Tool and Hydraulics, 2022, 50(14): 176-181.
[22] Liu J L, Zheng J Y, Wei X J, et al. A combined method for instantaneous frequency identification in low frequency structures, Engineering Structures, 2019, 194: 370-383.
[23] Khan N A, Boashash B. Multi‐component instantaneous frequency estimation using locally adaptive directional time frequency distributions[J]. International Journal of Adaptive Control and Signal Processing, 2016, 30(3): 429-442.
[24] Wang C, Ren W X, Wang Z C, et al. Instantaneous frequency identification of time-varying structures by continuous wavelet transform[J]. Engineering Structures, 2013, 52(9): 17-25. 

PDF(3561 KB)

Accesses

Citation

Detail

段落导航
相关文章

/