基于递归奇异能量指标的板梁桥铰接缝损伤识别方法

许鑫祥1, 战家旺1, 王闯1, 冯志超2, 赵竞琪1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (19) : 249-257.

PDF(3486 KB)
PDF(3486 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (19) : 249-257.
论文

基于递归奇异能量指标的板梁桥铰接缝损伤识别方法

  • 许鑫祥1,战家旺1,王闯1,冯志超2,赵竞琪1
作者信息 +

Damage identification method for hinge joints in slab-girder bridge based on RSEI

  • XU Xinxiang1, ZHAN Jiawang1, WANG Chuang1, FENG Zhichao2, ZHAO Jingqi1
Author information +
文章历史 +

摘要

为实现板梁桥铰接缝损伤的定量定位识别,提出了一种基于递归奇异能量指标的损伤识别方法:首先将待测桥梁各相邻梁体的竖向冲击振动响应进行交叉递归分析并得到无阈值交叉递归矩阵,其次对各递归矩阵进行奇异值分解以进一步提取损伤特征,最后对奇异值求取能量(递归奇异能量指标,RSEI),进一步建立了基于该指标的铰接缝损伤识别方法,并对其适用性进行了分析。结果表明:RSEI指标对板梁桥铰接缝损伤较为敏感,所提方法仅在板梁桥跨中布置一排传感器即可实现铰接缝平均损伤程度的定量识别,并可实现损伤铰缝的定位,识别效果良好;铰接缝损伤位置、损伤个数及噪声对识别结果的影响极小,冲击位置会对识别结果造成一定影响,但识别效果在可接受的范围之内;应用RSEI指标开展板梁桥铰接缝损伤识别时,建议将冲击位置设在边梁跨中,可避免冲击位置对识别结果造成的影响,取得更加理想的识别效果。

Abstract

To achieve quantitative and locational identification of hinge joint damage in slab girder bridges, this paper proposed a damage identification method based on the recursive singular energy index: Firstly, the vertical impact vibration signals from adjacent girders of the bridge under investigation were analyzed using cross recursive, resulting in a threshold-free cross recursive matrix. Secondly, the matrix was subjected to singular value decomposition to further extract damage characteristics. Finally, the energy of the singular values was calculated to serve as a damage-sensitive index (Recurrence Singular Energy Index, RSEI). An application method for the RSEI index in hinge joint damage identification was established as well as its applicability was thoroughly explored. The results indicate that the RSEI index is sensitive to hinge joint damage in plate girder bridges. The proposed method can quantitatively identify the average degree of damage to hinge joints and the location of damaged hinge joints. by placing a row of sensors in the middle of the span, and it performs well. The identification results are minimally affected by the location of the damage, the number of damages, and noise. The impact location does have some effect on the results, but the identification performance remains within an acceptable range. When applying the RSEI index for hinge joint damage identification in plate girder bridges, it is recommended to place the impact location in the middle of the side girder to avoid the impact of the impact location on the identification results, thereby achieving more ideal identification results.

关键词

损伤识别 / 板梁桥 / 铰接缝 / 递归奇异能量 / 递归图

Key words

damage identification / slab beam bridge / hinge joint / recursive singular energy / recursive graph

引用本文

导出引用
许鑫祥1, 战家旺1, 王闯1, 冯志超2, 赵竞琪1. 基于递归奇异能量指标的板梁桥铰接缝损伤识别方法[J]. 振动与冲击, 2024, 43(19): 249-257
XU Xinxiang1, ZHAN Jiawang1, WANG Chuang1, FENG Zhichao2, ZHAO Jingqi1. Damage identification method for hinge joints in slab-girder bridge based on RSEI[J]. Journal of Vibration and Shock, 2024, 43(19): 249-257

参考文献

[1] 中华人民共和国交通运输部. 2022年交通运输行业发展统计公报[EB/OL]. https: //xxgk. mot.gov.cn/ 2020/ jigou/ zhghs/ 202306/t20230615_3847023.html.
Ministry of transport of the people's republic of China. Statistical bulletin on the development of the transportation industry in 2022[EB/OL]. https: //xxgk. mot.gov.cn/ 2020/ jigou/ zhghs/ 202306/t20230615_3847023.html.
[2] 何余良, 丁小鹏, 郭士杰, 等. 插钢板法加固空心板梁桥铰缝试验研究[J]. 振动与冲击, 2022, 41(24):184-191+248.
HE Yuliang, DING Xiaopeng; GUO Shijie, et al. An experimental study on reinforcement of a hollow plate beam bridge based on an inserted steel plate method[J]. Journal of Vibration and Shock, 41(24):184-191+248.
[3] 冯海龙. 在役预应力混凝土空心板梁桥病害处置对策及加固效果试验研究[D]. 北京: 中国铁道科学研究院,2015.
FENG Hailong. Experimental study on treatment measures and reinforcement effect of prestressed concrete hollow slab beam bridges in service[D]. Beijing: China Academy of Railway Sciences, 2015.
[4] DAS S, ROY K. A state-of-the-art review on FRF-based structural damage detection: development in last two decades and way forward[J]. International Journal of Structural Stability and Dynamics, 2022, 22(02): 2230001.
[5] HE H X, ZHENG J C, LIAO L C, et al. Damage identification based on convolutional neural network and recurrence graph for beam bridge[J]. Structural Health Monitoring, 2021, 20(4): 1392-1408.
[6] 曲春绪, 宫亚超, 李宏男, 等. 基于模态参数指标的空心板梁桥铰缝损伤对比研究[J]. 土木与环境工程学报 (中英文), 2023, 45(1): 167-177.
QU Chunxu, GONG Yachao, LI Hongnan, et al. Comparative study of hinge joint damage of assembled hollow slab bridge based on modal parameter index[J]. Journal of Civil and Environmental Engineering, 2023, 45(1): 167-177.
[7] QU C X, GONG Y C, REN L, et al. Equivalent solution method for the analytical transverse modal shape of hollow slab bridges[J]. Mathematics, 2022, 10(21): 3977.
[8] DAN D H, XU Z Y, ZHANG K L, et al. Monitoring index of transverse collaborative working performance of assembled beam bridges based on transverse modal shape[J]. International Journal of Structural Stability and Dynamics, 2019, 19(08): 1950086.
[9] DAN D H, ZHENG W H, XU Z Y. Research on monitoring index of transverse cooperative working performance of assembled multi-girder bridges based on displacement spectrum similarity measure[C]//Structures. Elsevier, 2023, 48: 1322-1332.
[10] FRYBA L, PIRNER M. Load tests and modal analysis of bridges[J]. Engineering Structures, 2001, 23(1): 102-109.
[11] 战家旺, 李明, 卢洋, 等. 基于模型修正理论和频响函数模式置信准则的简支梁损伤动力评估方法[J]. 土木工程学报, 2017, 50(8): 49-58.
ZHAN Jiawang, LI Ming, LU Yang, et al. Dynamic evaluation method for damage of simply-supported beams based on model updating theory and FRF signature assurance criterion[J].
[12] ZHAN J W, ZHANG F, SIAHKOUHI M. A step-by-step damage identification method based on frequency response function and cross signature assurance criterion[J]. Sensors, 2021, 21(4): 1029.
[13] ZHAO R, YAN R Q, CHEN Z H, et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115: 213-237.
[14] LEE K, JEONG S, SIM S H, et al. Damage-detection approach for bridges with multi-vehicle loads using convolutional autoencoder[J]. Sensors, 2022, 22(5): 1839.
[15] SON H, PHAM V T, JANG Y, et al. Damage localization and severity assessment of a cable-stayed bridge using a message passing neural network[J]. Sensors, 2021, 21(9): 3118.
[16] HESTER D, GONZALEZ A. A wavelet-based damage detection algorithm based on bridge acceleration response to a vehicle[J]. Mechanical Systems and Signal Processing, 2012, 28: 145-166.
[17] TAN C J, ELHATTAB A, UDDIN N. Wavelet-entropy approach for detection of bridge damages using direct and indirect bridge records[J]. Journal of Infrastructure Systems, 2020, 26(4): 04020037.
[18] ZHANG T P, ZHU J, XIONG Z L, et al. A New Drive-by Method for Bridge Damage Inspection Based on Characteristic Wavelet Coefficient[J]. Buildings, 2023, 13(2): 397.
[19] 张健, 程雪莉, 袁平平, 等. 基于VMD和Chirplet变换的结构损伤识别研究[J]. 振动与冲击, 2023, 42(8):282-288.
ZHANG Jian, CHENG Xueli, YUAN Pingping, et al. Structural damage detection based on variational mode decomposition and the Chirplet transform[J]. Journal of Vibration and Shock, 2023, 42(8):282-288.
[20] 杨栋, 任伟新. 基于递归矩阵奇异熵的损伤识别方法[J]. 振动与冲击, 2012, 31(3): 60-63.
YANG Dong, REN Weixin. Structure damage detecting using singular entropy of recurrence matrix[J]. Journal of Vibration and Shock, 2012, 31(3): 60-63.
[21] LI D, LIANG Z L, REN W X, et al. Structural damage identification under nonstationary excitations through recurrence plot and multi-label convolutional neural network[J]. Measurement, 2021, 186: 110101.
[22] 肖雨雨. 基于小波包分解和递归图的桥梁模型损伤识别方法研究[D]. 大连: 大连海事大学, 2022.
XIAO Yuyu. Research on damage identification method of bridge model based on wavelet packet decomposition and RP[D]. Dalian: Dalian Maritime University, 2022.
[23] 王策. 递归图和卷积神经网络在桥梁损伤识别中的应用[D]. 大连: 大连海事大学, 2020.
WANG Ce. Application of recursive plot and convolutional neural network in the field of bridge damage identification[D]. Dalian: Dalian Maritime University, 2020.
[24] 徐荣桥. 结构分析的有限元法与MATLAB程序设计[M].北京: 人民交通出版社, 2006: 36-56.
[25] R.克拉夫, J.彭津. 结构动力学[M]. 王光远, 译. 北京: 高等教育出版社, 2006: 173-201.

PDF(3486 KB)

122

Accesses

0

Citation

Detail

段落导航
相关文章

/