城市道路交通噪声频谱及其对隔声评价中频谱修正量的影响

蔡阳生1, 2 陈智慧2 AKRAM A. N. ALABSI1 袁旻忞3, 4

振动与冲击 ›› 2024, Vol. 43 ›› Issue (19) : 287-297.

PDF(4548 KB)
PDF(4548 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (19) : 287-297.
论文

城市道路交通噪声频谱及其对隔声评价中频谱修正量的影响

  • 蔡阳生1, 2 陈智慧2 AKRAM A. N. ALABSI1 袁旻忞3, 4
作者信息 +

Urban road traffic noise spectra and their effects on spectral correctionin sound insulation evaluation

  • CAI Yangsheng1,2, CHEN Zhihui2, AKRAM A N A1, YUAN Minmin3,4
Author information +
文章历史 +

摘要

现行隔声评价标准中交通噪声频谱修正量参考的是上世纪八十年代北欧测量得到的交通噪声数据。为了研究Ctr修正量是否适用于评价建筑外窗对新时代城市道路交通噪声的隔声性能,本文对多种城市交通道路进行噪声监测,根据测量结果提出一组新的交通噪声频谱修正曲线CA,计算11种常见外窗构造在不同频率范围内的计权隔声量,并对比分析不同频谱修正量声压级频谱的差异性。结果表明:不同城市道路交通噪声频谱都具有低频声压级高、中频平稳、高频下降的相似特点;当今的城市道路交通噪声低频能量远低于Ctr所参考的频谱,其能量频谱分布更接近于C100-3150;对比分析11组外窗的交通噪声频谱修正量CA与现行标准的频谱修正量的差异,CA均落于C和Ctr参考频谱之间的范围内; CA与C、Ctr参考频谱的相关系数R2的值均>0.9且高于C与Ctr的相关性,因此CA对城市道路交通噪声频谱修正具有更好的适用性与代表性,研究结果可为临街住宅的隔声降噪工程提供数据参考。

Abstract

The current sound insulation evaluation standard refers to the traffic noise data measured in northern Europe in the 1980s as the basis for the spectrum correction for traffic noise. For the purpose of exploring whether Ctr correction is still appropriate in evaluating current urban road traffic noise and more precisely evaluating the sound insulation performance of building components that are affected by traffic noise. A variety of urban traffic road noise is monitored in this paper, a new set of traffic noise spectrum correction curves CA is proposed in accordance with the measurements, weighted sound insulation is computed for 11 common exterior window structures at different frequency frequencies, and differences in sound pressure level spectrums with various spectrum corrections are analyzed and compared. Results of the study indicate that road traffic noise spectrums in different cities possess similar characteristics such as high low-frequency sound pressure levels, stable medium frequency sounds, and low high-frequency sounds. In today's urban environment, the low-frequency energy of road traffic noise is much lower than the frequency spectrum referenced by Ctr, and its energy spectrum distribution is closer to C100-3150. After comparing and analyzing the spectrum correction of traffic noise in 11 groups of external windows with the current standard, CA falls within the range between C and Ctr reference spectra. Considering that the correlation coefficient between CA and the C and Ctr reference spectra is greater than 0.9 and higher than the correlation coefficient R2 between C and Ctr, CA has a greater potential for application and representativeness for analyzing the urban traffic noise spectrum. Consequently, the research results can provide data references for residential sound insulation and noise reduction projects affected by urban traffic noise.

关键词

城市道路交通噪声, 隔声 / 频谱修正量, 外窗

引用本文

导出引用
蔡阳生1, 2 陈智慧2 AKRAM A. N. ALABSI1 袁旻忞3, 4. 城市道路交通噪声频谱及其对隔声评价中频谱修正量的影响[J]. 振动与冲击, 2024, 43(19): 287-297
CAI Yangsheng1, 2, CHEN Zhihui2, AKRAM A N A1, YUAN Minmin3, 4. Urban road traffic noise spectra and their effects on spectral correctionin sound insulation evaluation[J]. Journal of Vibration and Shock, 2024, 43(19): 287-297

参考文献

[1] 中国环境噪声污染防治报告(2022)[R].中华人民共和国环境保护部.2022.
[2] VAN KEMPEN, ELISE, CASAS, MARIBEL, PERSHAGEN et al. WHO environmental noise guidelines for the european region: a systematic review on environmental noise and cardiovascular and metabolic effects: a summary[J]. International Journal of Environmental Research and Public Health,2018,15(2):379. 
[3] Adverse cardiovascular effects of traffic noise with a focus on nighttime noise and the new WHO noise guidelines[J]. Annual Review of PublicHealth,2020,41309-328. 
[4] GB/T 50121-2005. 建筑隔声评价标准[S]. 北京:中国标准出版社,2005.
[5] ISO 717-1:1996: Acoustics - Rating of sound insulation in buildings and of building elements
[6] NT ACOU 061 Windows traffic noise reduction Indices . Nordtest Method
[7] ISO 717-2020, Acoustics-Rating of sound insulation in buildings and of building elements[S]
[8] Koskinen V, Hongisto V. Tieliikennemelun taajuusjakauma[J]. 2011. 
[9] Ho K Y, Hung W T, Ng C F, et al. The effects of road surface and tyre deterioration on tyre/road noise emission[J]. Applied Acoustics, 2013, 74(7): 921-925.
[10] Buratti C,Moretti E. Traffic noise pollution: spectra characteristics and windows sound insulation in laboratory and field measurements[J]. Journal of Environmental Science and Engineering.2010,4(12): 28-36.
[11] 李玥.高铁交通噪声声源的空气声隔声评价频谱修正量研究[D].华南理工大学,2020.
[12] Landström U, Åkerlund E, Kjellberg A, et al. Exposure levels, tonal components, and noise annoyance in working environments[J]. Environment International, 1995, 21(3): 265-275.
[13] Birgit RB,Rindel JH. Sound insulation between dwellings-descriptors applied in building regulations in Europe[J]. Applied Acoustics, 2010( 71) : 171-180.
[14] Park H K,Bradley J S. Evaluating standard airborne sound insulation measures in terms of annoyance, loudness, and audibility ratings[J]. JASA,2009,126( 1) : 208 -219.
[15] Mathys J. Low-frequency noise and acoustical standards[J]. applied acoustics, 1993, 40(3): 185-199.
[16] Rindel J H. Acoustic quality and sound insulation between dwellings[J]. Building Acoustics, 1998, 5(4): 291-301.
[17] Rychtáriková M, Muellner H, Chmelík V, et al. Perceived loudness of neighbor sounds heard through heavy and light-weight walls with equal R w+ C 50–5000[J]. Acta Acustica united with Acustica, 2016, 102(1): 58-66.
[18] Virjonen P, Hongisto V, Mäkelä M M, et al. Optimized reference spectrum for rating the façade sound insulation[J]. The Journal of the Acoustical Society of America, 2020, 148(5): 3107-3116.
[19] 福州市交通运输局.福州交通概况.2022.
[20] GB 3222.2-2022, 声学 环境噪声的描述、测量与评价 第2部分:声压级测定 [S]. 北京:中国标准出版社,2022.
[21] GB/T 3785.2-2010,电声学 声级计(第2部分):型式评价试验[S],北京,中国标准出版社,2010.
[22] JTGB01-2020,公路工程技术标准[S].北京:中国标准出版社,2020.
[23] 马春燕,赵剑强.西安市高速公路上不同车型车辆交通噪声及其行驶速度的统计分析[J].交通环保,2005(03):22-25.
[24] 丁真真,赵剑强,陈莹等.公路交通噪声频率特征及等效频率研究[J].应用声学,2015,34(01):40-44.
[25] Sandberg U. Road traffic noise—The influence of the road surface and its characterization[J]. Applied Acoustics, 1987, 21(2): 97-118.
[26] ISO 226:2003:Acoustics—Normal equal-loudness-level contours[S]
[27] Miskinis K, Dikavicius V, Bliudzius R, et al. Comparison of sound insulation of windows with double glass units[J]. Applied Acoustics, 2015, 92: 42-46.
[28] Park H K, Bradley J S. Evaluating signal-to-noise ratios, loudness, and related measures as indicators of airborne sound insulation[J]. The Journal of the Acoustical Society of America, 2009, 126(3): 1219-1230.
[29] Park H K, Bradley J S. Evaluating standard airborne sound insulation measures in terms of annoyance, loudness, and audibility ratings[J]. The Journal of the Acoustical Society of America, 2009, 126(1): 208-219.
[30] Rasmussen B, Rindel J H. Sound insulation between dwellings-descriptors applied in building regulations in Europe[J].Applied Acoustics. 2010,71:171-180.
[31] Varma S, Simon R. Bias in error estimation when using cross-validation for model selection[J]. BMC bioinformatics, 2006, 7(1): 1-8.
[32] Virjonen P, Hongisto V, Mäkelä M M, et al. Optimized reference spectrum for rating the façade sound insulation[J]. The Journal of the Acoustical Society of America, 2020, 148(5): 3107-3116.
[33] de la Prida D, Pedrero A, Navacerrada M Á, et al. An annoyance-related SNQ for the assessment of airborne sound insulation for urban-type sounds[J]. Applied Acoustics, 2020, 168: 107432.
[34] Ziqin L ,Ming C ,Feng L , et al. Study of the traffic noise source emission model and the frequency spectrum analysis of electric vehicles on urban roads in China[J].Acta Acustica united with Acustica,2018,104(6):989-998.
[35] Julien C ,Simon B ,MarieAgnès P , et al. Road surface influence on electric vehicle noise emission at urban speed[J].Noise Mapping,2021,8(1):217-227.

PDF(4548 KB)

Accesses

Citation

Detail

段落导航
相关文章

/