平头车变长头车以保护行人头部损伤的方法、效果及影响因素研究

邹铁方1, 陈得着1, 赵晓波2, 袁湘婷1, 曹太山1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (19) : 298-305.

PDF(2853 KB)
PDF(2853 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (19) : 298-305.
论文

平头车变长头车以保护行人头部损伤的方法、效果及影响因素研究

  • 邹铁方1,陈得着1,赵晓波2,袁湘婷1,曹太山1
作者信息 +

Method, effect and influencing factors of changing flat-headed vehicles into long-headedones to protect pedestrian head against injuries

  • ZOU Tiefang1, CHEN Dezhuo1, ZHAO Xiaobo2, YUAN Xiangting1, CAO Taishan1
Author information +
文章历史 +

摘要

为提升平头车保护人体头部损伤的能力和法规上的接受水平,通过推导车头伸出长度公式而给出一种使平头车变长头车的方法,随后通过理论和仿真分析研究所提方法的损伤防护效果及摩擦系数、车速和行人身高等因素对防护效果的影响规律。结果显示:所提方法能极显著降低行人头部损伤,且在低速、低摩擦、矮行人身高下防护效果更佳。分析发现伸出可变车头长度优于固定车头长度,而在获得更高精度行人损伤风险曲线后可进一步优化所提方法。该研究将为M类、N类等大型平头车辆保护行人提供新思路,为它们利用长头车智能安全技术以更好地保护行人提供支持。

Abstract

In order to improve the ability of flat-front vehicles to protect human body head injuries in pedestrian-vehicle collisions and the level of regulatory acceptance, a method to change the flat-front vehicle into a bonnet-front one is proposed by deducing the formula of the protruding length of the front-end. Then the injury protection effect of the proposed method and the influence of factors such as friction coefficient, vehicle speed and pedestrian height on the protection effect are studied by theoretical and simulation analysis. The results show that the proposed method can significantly reduce pedestrian head injury, and the protective effect is better at lower speed, lower friction and shorter pedestrian height. It is found that variable front-end length is better than fixed front-end length, and the proposed method can be further optimized after obtaining higher precision pedestrian injury risk curve. This study will provide new ideas for the protection of pedestrians by large vehicles such as Class M and Class N, and provide support for them to better protect pedestrians by using intelligent safety-related technologies of bonnet-front vehicles.

关键词

平头车 / 长头车 / 头部AIS3+损伤风险 / 伸出长度 / 防护效果

Key words

flat-front vehicle / bonnet-front vehicle / injury risk of head AIS3+ / extension length / protective effect

引用本文

导出引用
邹铁方1, 陈得着1, 赵晓波2, 袁湘婷1, 曹太山1. 平头车变长头车以保护行人头部损伤的方法、效果及影响因素研究[J]. 振动与冲击, 2024, 43(19): 298-305
ZOU Tiefang1, CHEN Dezhuo1, ZHAO Xiaobo2, YUAN Xiangting1, CAO Taishan1. Method, effect and influencing factors of changing flat-headed vehicles into long-headedones to protect pedestrian head against injuries[J]. Journal of Vibration and Shock, 2024, 43(19): 298-305

参考文献

[1] ORGANIZATION W H.Global Status Report on Alcohol and Health 2018[R]. Geneva:World Health Organization, 2019.
[2] 薛海涛, 李海波, 赵小羽, 等. 汽车-电动自行车与汽车-自行车碰撞中骑车人动力学响应对比研究[J]. 公路与汽运, 2021, (06):37-42.
XUE H, LI H, ZHAO X, et al. A comparative study of rider dynamic response in vehicle-electric bicycle and vehicle-bicycle collisions[J]. Highways & Automotive Applications, 2021, (06):37-42.
[3] 余超, 蓝靛靛, 王方, 等. 乘用车前挡风玻璃角度对行人头部/颅脑损伤影响研究[J]. 振动与冲击, 2020, 39(6):189-197.
YU C, LAN D, WANG F, et al. Influence of windscreen inclination angle on the head/brain injury in a pedestrian impact accident[J]. Journal of vibration and shock, 2020, 39(6):189-197.
[4] QIU B, FAN W. Mixed logit models for examining pedestrian injury severities at intersection and non-intersection locations[J]. Journal of Transportation Safety & Security, 2022, 14(8):1333-1357.
[5] LI G, YANG J, SIMMS C. A virtual test system representing the distribution of pedestrian impact configurations for future vehicle front-end optimization[J]. Traffic Injury Prevention, 2016, 17(5):515-523.
[6] LI G, YANG J, SIMMS C. Safer passenger car front shapes for pedestrians: A computational approach to reduce overall pedestrian injury risk in realistic impact scenarios[J]. Accident Analysis & Prevention, 2017, 100:97-110.
[7] TANNO K, KOHNO M, OHASHI N, et al. Patterns and mechanisms of pedestrian injuries induced by vehicles with flat-front shape[J]. Legal Medicine, 2000, 2(2):68-74.
[8] LEFLER D E, GABLER H C. The fatality and injury risk of light truck impacts with pedestrians in the United States[J]. Accident Analysis & Prevention, 2004, 36(2):295-304.
[9] DESAPRIYA E, SUBZWARI S, SASGES D, et al. Do light truck vehicles (LTV) impose greater risk of pedestrian injury than passenger cars? A meta-analysis and systematic review[J]. Traffic Injury Prevention, 2010, 11(1):48-56.
[10] 杨济匡. 汽车与行人碰撞中的损伤生物力学研究概览[J]. 汽车工程学报, 2011, 1(2):81-93.
YANG J. Overview of Research on Injury Biomechanics in Car-pedestrian Collisions[J]. Chinese Journal of Automotive Engineering, 2011, 1(2):81-93.
[11] SHEN J, JIN X L, ZHANG X Y. Simulated evaluation of pedestrian safety for flat-front vehicles[J]. International Journal of Crashworthiness, 2008, 13(3):247-254.
[12] 邹铁方, 余志, 蔡铭, 等. 基于Pc-Crash的车-人事故再现[J]. 振动与冲击, 2011, 30(3):215-219.
ZOU T, YU Z, CAI M, et al. Car-pedestrian accident reconstruction based on Pc-Crash[J]. Journal of vibration and shock, 2011, 30(3):215-219.
[13] CAMDEN M C, MEDINA-FLINTSCH A, HICKMAN J S, et al. Do the benefits outweigh the costs? Societal benefit-cost analysis of three large truck safety technologies[J]. Accident Analysis & Prevention, 2018, 121:177-184.
[14] KUMAR V, SUBRAMANIAN S C, RAJAMANI R J I T O V T. Autonomous Emergency Braking of a Heavy Road Vehicle Using a Low-Density Flash Lidar[J]. IEEE Transactions on Vehicular Technology, 2023, PP(99):1-11.
[15] ZHOU T, LIU W, ZHANG M, et al. Optimization of AEB Decision System Based on Unsafe Control Behavior Analysis and Improved ABAS Algorithm[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, PP(99):1-14.
[16] HAUS S H, SHERONY R, GABLER H C. Estimated benefit of automated emergency braking systems for vehicle-pedestrian crashes in the United States[J]. Traffic Injury Prevention, 2019, 20(sup1):S171-S176.
[17] 韩勇, 李永强, 许永鸿, 等. 基于 VRUs 深度事故重建的 AEB 效能对头部损伤风险的影响[J]. 汽车安全与节能学报, 2021, 12(2):490-498.
HAN Y, LI Y, XU Y, et al. Effectiveness of AEB system for head injury risk based on VRUs in-depth accident reconstruction[J]. Journal Automotive Safety and Energy, 2021, 12(2):490-498.
[18] 邹铁方, 刘前程, 魏亮. 加装传统AEB后的未避免事故典型碰撞场景与事故特征[J]. 汽车工程, 2023, 45(6):1062-1072.
ZOU T, LIU Q, WEI L. Typical Collision Scenarios and Accident Characteristics of Accidents not Avoided After Installing Traditional AEB[J]. Automotive Engineering, 2023, 45(6):1062-1072.
[19] 冉德钦, 陈帅, 刘文君, 等. 新能源重型卡车应用研究[J]. 公路与汽运, 2023, (05):10-12.
RAN D, CHEN S, LIU W, et al. New energy heavy duty truck application research[J]. Highways & Automotive Applications, 2023, (05):10-12.
[20] ZOU T, SHANG S, SIMMS C. Potential benefits of controlled vehicle braking to reduce pedestrian ground contact injuries[J]. Accident Analysis & Prevention, 2019, 129:94-107.
[21] 邹铁方,  周靖. 参数扰动下基于制动控制的人地碰撞损伤防护风险[J]. 汽车工程, 2023, 45:313-323.
ZOU T, ZHOU J. The Protection Risk of Pedestrian-Ground Collision Injury Based on Braking Control Under Parameter Disturbance[J]. Automotive Engineering, 2023, 45(2):313-323.
[22] FEIST F, GUGLER J, GIORDA A, et al. Improvements to the protection of vulnerable road users: Retrofittable, energy-absorbing front end for heavy goods vehicles[J]. International Journal of Crashworthiness, 2008, 13(6):609-627.
[23] 邹铁方, 陈得着.一种使平头车变长头车以保护行人的智能装置[P]. 中国, A, CN115320534. 2022-11-11.
[24] WOOD D P, ELLIOTT J R, LYONS M, et al. Applications and limitations of wrap-around ratio to vehicle speed estimation in pedestrian collision analysis[J]. International Journal of Crashworthiness, 2013, 18(3):288-305.
[25] ZHENG B, TANG J, CHEN J, et al. Investigation of Adhesion Properties of Tire-Asphalt Pavement Interface Considering Hydrodynamic Lubrication Action of Water Film on Road Surface[J]. Materials, 2022, 15(12):4173.
[26] 邹铁方, 刘朱紫, 肖璟, 等. 一种降低人-地撞击损伤的车辆制动控制方法[J]. 汽车工程, 2021, 43(01):105-112.
ZOU T, LIU Z, XIAO J, et al. A Vehicle Braking Control Method for Reducing Pedestrian‑Ground Impact Injury[J]. Automotive Engineering, 2021, 43(01):105-112.
[27] JUREWICZ C, SOBHANI A, WOOLLEY J, et al. Exploration of Vehicle Impact Speed – Injury Severity Relationships for Application in Safer Road Design[J]. Transportation Research Procedia, 2016, 14:4247-4256.
[28] SHI L, HAN Y, HUANG H, et al. Analysis of pedestrian-to-ground impact injury risk in vehicle-to-pedestrian collisions based on rotation angles[J]. Journal of Safety Research, 2018, 64:37-47.
[29] FEIST F, GUGLER J, ARREGUI-DALMASES C, et al. Pedestrian collisions with flat-fronted vehicles: injury patterns and importance of rotational accelerations as a predictor for traumatic brain injury (TBI)[C] // Proceedings of the 21st International Technical Conference on the Enhanced Safety of Vehicles (ESV). Stuttgart: SAE, 2009. 49-67.
[30] ZOU T, LIU Z, WANG D, et al. Methods, upper limit and reason for reducing pedestrian ground contact injury by controlling vehicle braking[J]. International Journal of Crashworthiness, 2022, 27(4):1140-1151.

PDF(2853 KB)

Accesses

Citation

Detail

段落导航
相关文章

/