空间卷曲超表面圆柱壳声波调控及实验研究

刘欢1, 张晨曦2, 杨子悦1, 张红艳1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (19) : 37-42.

PDF(1959 KB)
PDF(1959 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (19) : 37-42.
论文

空间卷曲超表面圆柱壳声波调控及实验研究

  • 刘欢1,张晨曦2,杨子悦1,张红艳1
作者信息 +

Acoustic wave control and experimental study on space curled meta-surface cylindrical shell

  • LIU Huan1, ZHANG Chenxi2, YANG Ziyue1, ZHANG Hongyan1
Author information +
文章历史 +

摘要

基于广义斯涅尔定律,设计了两种由空间卷曲单元构成的空间卷曲超表面圆柱壳,通过改变单元内部齿条长度、宽度以及数量改变声波传播路径的长度和透射声波相位,实现对点声源声波的单向调控和双向调控,在目标范围内产生低噪声区域。推导了适用于超表面圆柱壳的极坐标广义斯涅尔定律表达式,应用有限元方法分析了空间卷曲超表面圆柱壳在点声源作用下的声压场分布和波的调控特性。搭建了声压测试实验平台,测得结构的透射声场声压值,将测量值与数值结果对比验证,两者具有较好的一致性。结果表明所设计的超表面圆柱壳可实现对柱面波的有效调控,为管道、压力容器等工程结构产生的柱面波噪声控制提供有益参考。

Abstract

Based on the generalized Snell’s law, two kinds of space-coiling metasurface cylindrical shell composed of space-coiling structure units were designed. Changing the length, width and number of racks inside the unit, the path length and phase of the acoustic wave propagation of the transmitted acoustic wave are changed to realize the regulations of the acoustic wave of the point sound source. The low noise region was realized within the target range. The expression of polar generalized Snell’s law for metasurface cylindrical shells was derived. The finite element method was used to analyze the sound pressure distribution and wave control characteristics of the space-coiling metasurface cylindrical shells under the point sound source. Furthermore, the sound pressure test experiment platform was built, and the sound pressure distribution at different positions of the transmission sound field of the structure was measured. The results were compared with the numerical analysis results, and they have a good agreement. The results show that the designed metasurface cylindrical shells can effectively control the cylindrical wave, which provides a useful reference for the control of cylindrical wave noise generated by engineering structures such as pipelines and pressure vessels.

关键词

声学超表面 / 空间卷曲结构 / 超表面圆柱壳 / 柱面波噪声 / 广义斯涅尔定律

Key words

acoustic metasurface / coiling up space / metasurface cylindrical shell / cylindrical wave noise / generalized Snell’s law

引用本文

导出引用
刘欢1, 张晨曦2, 杨子悦1, 张红艳1. 空间卷曲超表面圆柱壳声波调控及实验研究[J]. 振动与冲击, 2024, 43(19): 37-42
LIU Huan1, ZHANG Chenxi2, YANG Ziyue1, ZHANG Hongyan1. Acoustic wave control and experimental study on space curled meta-surface cylindrical shell[J]. Journal of Vibration and Shock, 2024, 43(19): 37-42

参考文献

[1] Zheludev N I. The road ahead for metamaterials[J]. Science, 2010, 328(5978): 582-583.
[2] Liu Z, Zhang X, Mao Y, et al. Locally resonant sonic materials[J]. science, 2000, 289(5485): 1734-1736.
[3] Climente A, Torrent D, Sánchez-Dehesa J. Sound focusing by gradient index sonic lenses[J]. Applied Physics Letters, 2010, 97(10).
[4] Liu J, Hou Z, Fu X. Negative refraction realized by band folding effect in resonator-based acoustic metamaterials[J]. Physics Letters A, 2015, 379(36): 2097-2101.
[5] 何川,张崇卓,吴光华等.声学近零折射率材料的声波调控研究[J].振动与冲击,2023,42(19):125-129.
He Chuan, ZHANG Chong-zhuo, WU Guang-hua, et al. Research on acoustic modulation of acoustic near-zero refractive index materials[J]. Journal of vibration and shock, 2023, 42 (19):125-129.
[6] 陈阿丽,汪越胜,王艳锋等.声学/弹性相位梯度超表面设计:原理、功能基元、可调和编码[J].力学进展, 2022, 52(04):948-1011.
CHEN A-li, WANG Yue-sheng, WANG Yan-feng, et al. Acoustic / elastic phase gradient metasurface design:    principle, functional primitives, tunable coding[J]. advances in mechanics, 2022, 52(04):948-1011.
[7] Ma G, Yang M, Xiao S, et al. Acoustic metasurface with hybrid resonances[J]. Nature materials, 2014, 13(9): 873-878.
[8] 曹卫锋,白鸿柏,朱庆.薄膜型声学超材料的低频吸收性能研究[J].振动与冲击,2018,37(14):188-194.
CAO Wei-feng, BAI Hong-bai, ZHU Qing. Research on low frequency absorption properties of thin film acoustic metamaterials[J]. Journal of vibration and shock, 2018, 37(14):188-194.
[9] 杨坤,杨明月,崔世明等.大尺寸薄膜型声学超材料复合结构低频宽带隔声性能研究[J].振动与冲击,2022,41(22):14-22.
YANG Kun, YANG Ming-yue, CUI Shi-ming, et al. Research on low-frequency broadband sound insulation performance of large-size thin-film acoustic metamaterial composite   structure[J]. Journal of vibration and shock, 2022, 41 (22):14-22.
[10] Zhao J, Li B, Chen Z, et al. Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection[J]. Scientific reports, 2013, 3(1): 2537.
[11] Zhao J, Li B, Chen Z N, et al. Redirection of sound waves using acoustic metasurface[J]. Applied Physics Letters, 2013, 103(15).
[12] Li Y, Jiang X, Liang B, et al. Metascreen-based acoustic passive phased array[J]. Physical Review Applied, 2015, 4(2): 024003.
[13] Li J, Wang W, Xie Y, et al. A sound absorbing metasurface with coupled resonators[J]. Applied Physics Letters, 2016, 109(9).
[14] Li Y, Qi S, Assouar M B. Theory of metascreen-based acoustic passive phased array[J]. New Journal of Physics, 2016, 18(4): 043024.
[15] Li Y, Liang B, Gu Z, et al. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces[J]. Scientific reports, 2013, 3(1): 2546.
[16] Li Y, Jiang X, Li R, et al. Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces[J]. Physical Review Applied, 2014, 2(6): 064002.
[17] Li Y, Liang B, Zou X, et al. Extraordinary acoustic transmission through ultrathin acoustic metamaterials by coiling up space[J]. Applied Physics Letters, 2013, 103(6).
[18] Li Y, Yu G, Liang B, et al. Three-dimensional ultrathin planar lenses by acoustic metamaterials[J]. Scientific reports, 2014, 4(1): 6830.
[19] Xie Y, Wang W, Chen H, et al. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface[J]. Nature communications, 2014, 5(1): 5553.
[20] Yuan B, Cheng Y, Liu X. Conversion of sound radiation pattern via gradient acoustic metasurface with space-coiling structure[J]. Applied Physics Express, 2015, 8(2): 027301.
[21] Tang K, Qiu C, Ke M, et al. Anomalous refraction of airborne sound through ultrathin metasurfaces[J]. Scientific reports, 2014, 4(1): 6517.
[22] Ghaffarivardavagh R, Nikolajczyk J, Glynn Holt R, et al. Horn-like space-coiling metamaterials toward simultaneous phase and amplitude modulation[J]. Nature communications, 2018, 9(1): 1349.
[23] Tang H, Hao Z, Zang J. Nonplanar acoustic metasurface for focusing[J]. Journal of Applied Physics, 2019, 125(15).
[24] Wang X, Mao D, Li Y. Broadband acoustic skin cloak based on spiral metasurfaces[J]. Scientific reports, 2017, 7(1): 11604.
[25] Zhou H T, Fan S W, Li X S, et al. Tunable arc-shaped acoustic metasurface carpet cloak[J]. Smart Materials and Structures, 2020, 29(6): 065016.
[26] 汤宗情,翟成,武世亮等.YBT32-2型轴流式局部通风机噪声分布规律[J].煤矿安全,2015,46(05):39-42.
TANG Zong-qing, ZHAI Cheng, WU Shi-liang, et al. Noise distribution law of YBT32-2 axial flow local fan[J]. Safety in Coal Mines, 2015,46(05):39-42.

PDF(1959 KB)

Accesses

Citation

Detail

段落导航
相关文章

/