目前在结构振动和地震动测量中,主要关注位移、速度和加速度响应,而忽略了加速度的微分(即加加速度)。结构的加加速度响应与舒适度和结构损伤演化密切相关,已经开始受到工程技术人员的重视。在土木工程领域,加加速度传感器尚未被成熟地应用于工程项目或结构试验中。本文介绍了一种基于微分Mach-Zehnder干涉仪的新型光纤加加速度传感器,可直接测量结构的加加速度响应。将该传感器直接布置于振动台台面进行了0.1~100Hz的正弦扫频校准振动测试,试验结果证明该传感器具有良好的工作性能,由采集的加加速度积分获取的加速度时程与振动输入的相关系数达到了0.976。同时,将该加加速度传感器应用于某超高层模型结构的振动台试验,采集超高层结构加加速度时程响应。试验结果表明该超高层结构顶部的加加速度放大效果超过了6倍,鞭梢效应显著。试验中采集的加加速度响应也为进一步开展该抗震新参量的研究提供了数据支撑。该新型光纤加加速度测量仪器在地震工程领域具有广阔的应用前景。
Abstract
Currently, the main focus in structural vibration and earthquake measurements is on displacement, velocity and acceleration responses, while the derivative of acceleration, namely jerk, is neglected. Jerk responses of structures are closely related to comfort and structural damage evolution, which have begun to be taken seriously by engineers and technicians. In civil engineering, jerk sensors have not yet been maturely used in engineering projects or structural tests. This paper presents a new fiber optic jerk sensor based on the differential Mach-Zehnder interferometer which can directly measure the jerk responses of structures. The sensor was arranged directly on the shaking table for calibration vibration tests where the sine sweep in the frequency range of 0.1~100Hz was adopted. The test results proved that the sensor has good working performance. The correlation coefficient between the acceleration time-history obtained from the integration of jerk and the test input reaches 0.976. Moreover, these jerk sensors were applied to the shaking table test of a super high-rise building, where the jerk time-history responses of the super high-rise building were collected. The test results show that the amplification effect of jerk at the top of this super high-rise building is more than 6 times. This building’s whiplash effect is obvious, which may greatly affect its comfort and safety. The jerk responses collected in the test also provide data support for further research on this new seismic parameter. This new fiber optic jerk sensor has a broad application prospect in the field of earthquake engineering.
关键词
加加速度测量 /
光纤传感器 /
振动台试验 /
超高层结构 /
结构抗震
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Hayati H, Eager D, Pendrill A M, et al. Jerk within the context of science and engineering—A systematic review [J]. Vibration, 2020, 3:371-409.
[2] Castellanos J C, Fruett F. Embedded system to evaluate the passenger comfort in public transportation based on dynamical vehicle behavior with user’s feedback [J]. Measurement, 2014, 47:442-451.
[3] Vukobratović V, Ruggieri S. Jerk in earthquake engineering: State-of-the-art [J]. Buildings, 2022, 12:1123.
[4] Macfarlane S, Croft E A. Jerk-bounded manipulator trajectory planning: Design for real-time applications [J]. IEEE Transactions on Robotics and Automation, 2003, 19(1):42-52.
[5] Piazzi A, Visioli A. Global minimum-jerk trajectory planning of robot manipulators [J]. IEEE Transactions on Industrial Electronics, 2000, 47(1):140-149.
[6] 孟昭曜. 加加速度的力学计算和物理意义[J]. 四川师范大学学报, 2005, 28(6): 741-743.
MENG Zhao-yao. Mechanical calculation and physical understanding of the derivative of acceleration [J]. Journal of Sichuan Normal University, 2005, 28(6):741-743.
[7] Tong M, Wang G, Lee G C. Time derivative of earthquake acceleration [J]. Earthquake Engineering and Engineering Vibration, 2005, 4(1):1-16.
[8] Papandreou I G, Papagiannopoulos G A. On the jerk spectra of some inelastic systems subjected to seismic motions [J]. Soil Dynamics and Earthquake Engineering, 2019, 126:105807.
[9] 何浩祥,闫维明,陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学,2011, 28(11):124-129.
HE Hao-xiang, YAN Wei-ming, CHEN Yan-jiang. Study on concept and characteristics of seismic jerk response spectra [J]. Engineering Mechanics, 2011, 28(11):124-129.
[10] 李岩汀,徐绩青,许锡宾,等. 结构动力响应中急动度的计算[J]. 应用数学和力学,2017, 38(8): 922-931.
LI Yan-ting, XU Ji-qing, XU Xi-bin, et al. The calculation of jerk in structural dynamic responses. Applied Mathematics and Mechanics, 2017, 38(8):922-931.
[11] Tsuchiya T, Yamakado M, Ishii M, et al. Fundamental study on vibration control using the derivative of acceleration “jerk” sensor [J]. JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 1998, 41(4):786-791.
[12] Chase J G, Barroso L R, Hunt S. Quadratic jerk regulation and the seismic control of civil structures [J]. Earthquake Engineering and Structural Dynamics, 2003, 32:2047-2062.
[13] Mariani M, Pugi F. Effects of impulsive actions due to seismic jerk and local failures in masonry structures [J]. In Proceedings of the XI International Conference on Structural Dynamics (EURODYN 2020), Athens, Greece, 23-26 November 2020,Volume II, 4373-4417.
[14] Yaseen A A, Ahmed M S, Al-Kamaki Y S S. The possibility of using jerk parameters as seismic intensity measure [J]. Journal of University of Duhok, 2020, 23(2):254-277.
[15] Rangel-Magdaleno J J, Romero-Troncoso R J, Osornio-Rios R A, et al. Novel oversampling technique for improving signal-to-quantization noise ratio on accelerometer-based smart jerk sensors in CNC applications [J]. Sensors, 2009, 9(5):3767-3789.
[16] Nakazawa S, Ishihara T, Inooka H. Real-time algorithms for estimating jerk signals from noisy acceleration data [J]. International Journal of Applied Electromagnetics and Mechanics, 2003, 18:149-163.
[17] Tamura M, Yamamoto S, Sone A, et al. Detection of discontinuities in response of building on earthquake by using the jerk sensor combined with a vibratory gyroscope and a cantilever [J]. Journal of Structural and Construction Engineering AIJ, 1999, 64:53-60.
[18] Henmi N. Measurement Method of Jerk [J]. Journal of the Japan Society for Precision Engineering, 2014, 80(11):995-998.
[19] Fujiyoshi M, Nonomura Y, Arai F, et al. Analysis and design of a new micro jerk sensor with viscous coupling [J]. Journal of Robotics and Mechatronics, 2003, 15(6):582-587.
[20] 杨学山,齐霄斋,李兆治,等. 基于测量加速度微分量的传感器[J]. 振动与冲击,2008, 27(12):143-147.
YANG Xue-shan, QI Xiao-zhai, LI Zhao-zhi, et al. Sensor for measuring the derivative of acceleration component [J]. Journal of Vibration and Shock, 2008, 27(12):143-147.
[21] Li H, Zhang W, Zhang J, et al. Fiber optic jerk sensor [J]. Optics Express, 2022, 30(4):5585-5595.
[22] Spammer S J, Swart P L. Differentiating optical-fiber Mach-Zehnder interferometer [J]. Applied Optics, 1995, 34(13):2350-2353.
[23] 王济. MATLAB在振动信号处理中的应用[M]. 北京:中国水利水电出版社,2006.
WANG Ji. Application of MATLAB in vibration signal processing [M]. Beijing: China Water & Power Press, 2006.
[24] 建筑抗震设计规范:GB 50011-2010[S]. 2016版. 北京:中国建筑工业出版社,2016.
Code for seismic design of building: GB 50011-2010 [S]. 2016 ed. Beijing: China Architecture & Building Press, 2016.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}