退化模型确认试验是评估退化模型可信度的一种试验。为了得到低成本、高可信度的退化模型确认试验方案,提出了一种基于随机过程的退化模型确认试验设计方法。首先,提出了一种基于随机过程的退化模型确认度量指标,该度量指标采用仿真响应和试验观测数据的概率密度函数在时域内的重合率。其中,试验数据的概率密度采用核密度估计,以减小试验样本不充足时样本数量对确认结果的影响。然后,建立了退化模型确认试验优化设计模型,该优化模型以试验成本为优化目标,确认度量指标为约束,并且同时考虑了试验样本数量、试验观测时刻数量和试验观测时刻分布的影响。随后,提出一种求解该优化模型的协同优化方法。最后,通过复合材料层压板案例验证了提出方法在工程应用中的可行性和有效性。
Abstract
Validation experiment of degradation model is a new type of experiment, which is used to determine the credibility of the degradation model. In order to obtain low cost and high credibility of validation experiment for degradation model, a methodology of validation experiment design for degradation model based on stochastic process is proposed. Firstly, a validation metric for degradation model based on stochastic process is presented, in which the coincidence rate between the probability density functions (PDFs) of the results of the simulation model and the PDFs of the experimental observations in the time domain is applied. In particular, kernel density estimation is used to obtain the PDFs from experimental data, which reduces the error of the metric in small sample case. Furthermore, an optimization model of validation experiment design for degradation model is constructed, in which the experimental cost is the optimization objective, the validation metric is the constraint, while the influences of the number of experimental samples, the number and distribution of observation instants are considered. Meanwhile, a collaborative optimization algorithm is developed to solve the optimization model. Finally, the composite laminated plate is demonstrated to verify the feasibility and effectiveness of the proposed method in engineering applications.
关键词
确认试验 /
退化模型 /
随机过程 /
核密度估计
{{custom_keyword}} /
Key words
validation experiment /
degradation model /
stochastic process /
kernel density estimation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 骆政波,范鑫,刘峰,等. 一种多轴向耦合随机激励下缺口试件振动疲劳寿命预测方法[J]. 振动与冲击,2023, 42(17): 105-113.
LUO Zhengbo, FAN Xin, LIU Feng, et al. A method for predicting vibration fatigue life of notched specimens under multi-axial coupled random excitation[J]. Journal of Vibration and Shock, 2023, 42(17): 105-113.
[2] 张强,张佳瑶,吕馥言. 基于维纳过程截齿磨损退化预测研究[J]. 振动与冲击,2023, 42(1): 207-214.
ZHANG Qiang, ZHANG Jiayao, LÜ Fuyan. Prediction of pick wear degradation states of road header based on Wiener process[J]. Journal of Vibration and Shock, 2023, 42(1): 207-214.
[3] LEE G, KIM W, OH H, et al. Review of statistical model calibration and validation—from the perspective of uncertainty structures[J]. Structural and Multidisciplinary Optimization, 2019, 60(4): 1619-1644.
[4] NAIR V N. Estimation of reliability in field-performance studies: Discussion[J]. Technometrics, 1988, 30 (4) :397-383.
[5] HU C, XING Y, DU D, et al. Remaining useful life estimation for two-phase nonlinear degradation processes [J]. Reliability Engineering & System Safety, 2023, 230: 108945.
[6] LI Y, DONG Y, GUO H. Copula-based multivariate renewal model for life-cycle analysis of civil infrastructure considering multiple dependent deterioration processes[J]. Reliability Engineering & System Safety, 2023, 231: 108992.
[7] HU K, CHEN G, ZHOU C, et al. Dynamic response of a large vertical tank impacted by blast fragments from chemical equipment[J]. Safety Science, 2020, 130: 104863.
[8] LIU X, WANG R, HU D, et al. Degradation analysis on high-cycle bending fatigue for woven sic/sic composites based on wiener process model[J]. Materials & Design, 2021, 198(16): 109295.
[9] WU B, DING D. A gamma process based model for systems subject to multiple dependent competing failure processes under Markovian environments[J]. Reliability engineering & system safety, 2022, 217: 806-816.
[10] WANG C, HERMANN G Matthies. Novel model calibration method via non-probabilistic interval characterization and Bayesian theory[J]. Reliability Engineering & System Safety, 2019, 183: 84-92.
[11] 夏侯唐凡,陈江涛,邵志栋,等. 随机和认知不确定性框架下的CFD模型确认度量综述[J]. 航空学报,2022, 43(8): 174-190.
XIAHOU Tangfan, CHEN Jiangtao, SHAO Zhidong, et al. Model validation metrics for CFD numerical simulation under aleatory and epistemic uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 174-190.
[12] ZHAO L, LU Z, YUN W. Validation metric based on Mahalanobis distance for models with multiple correlated responses[J]. Reliability Engineering & System Safety, 2017, 159: 80-89.
[13] 张保强,苏国强,展铭,等. 概率盒框架下多响应模型确认度量方法[J]. 控制与决策,2019, 34(12): 2642-2648.
ZHANG Baoqiang, SU Guoqiang, ZHAN Ming, et al. Model validation metrics with multiple correlated responses under the frame of probability box[J]. Control and Decision, 2019, 34(12): 2642-2648.
[14] 肖钊,韩旭,杨刚. 基于区间技术的模型确认方法及应用[J]. 机械工程学报,2014, 50(14): 177-184.
XIAO Zhao, HAN Xu, YANG Gang. Model validation method and its application based on the interval techniques[J]. Journal of Mechanical Engineering, 2014, 50(14): 177-184.
[15] STEFAN Riedmaier, BENEDIKT Danquah, BERNHARD Schick, et al. Unified framework and survey for model verification, validation and uncertainty quantification[J]. Archives of Computational Methods in Engineering, 2021, 28(4): 2655-2688.
[16] ZHAN Z F, FU Y, YANG R J, et al. An enhanced Bayesian based model validation method for dynamic systems[J]. Journal of Mechanical Design, 2011, 133 (4): 041005.
[17] WANG Z Q, FU Y, YANG R J, et al. Validating dynamic engineering models under uncertainty[J]. Journal of Mechanical Design, 2016, 138 (11): 111402.
[18] HUAN X, MARZOUK Y. Gradient-based stochastic optimization methods in Bayesian experimental design[J]. International Journal for Uncertainty Quantification, 2014, 4 (6): 479-510.
[19] 锁斌,孙东阳,曾超,等. 考虑随机不确定性的常态仿真模型确认试验设计[J]. 控制与决策,2020, 35(8): 1923-1928.
SUO Bin, SUN Dongyang, ZENG Chao, et al. Model validation experiment design of time-invariant model with random uncertainty[J]. Control and Decision, 2020, 35(8): 1923-1928.
[20] PRADLWARTER H J, SCHUЁLLER G I. The use of kernel densities and confidence intervals to cope with insufficient data in validation experiments[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2550-2560.
[21] 张保强,陈国平,郭勤涛. 结构动力学模型确认问题的核密度估计方法[J]. 机械工程学报,2011, 47(17): 29-36.
ZHANG Baoqiang, CHEN Guoping, GUO Qintao. Structural dynamic model validation problem solution using kernel density estimation method[J]. Journal of Mechanical Engineering, 2011, 47(17): 29-36.
[22] SUN D Y, SHI Y, ZHANG B Q. Robust optimization of constrained mechanical system with joint clearance and random parameters using multi-objective particle swarm optimization[J]. Structural and Multidisciplinary Optimization, 2018, 58(5): 2073-2084.
[23] DE Vasconcellos DS, TOUCHARD F, CHOCINSKI-ARNAULT L. Tension–tension fatigue behaviour of woven hemp fibre reinforced epoxy composite: A multi-instrumented damage analysis[J]. International Journal of Fatigue, 2014, 59: 159-169.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}