基于反馈FxLMS-鲁棒混合控制算法的主动隔振平台研究

杨纪楠1, 2, 焦素娟1, 2, 龙新华1, 2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (19) : 59-67.

PDF(2922 KB)
PDF(2922 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (19) : 59-67.
论文

基于反馈FxLMS-鲁棒混合控制算法的主动隔振平台研究

  • 杨纪楠1,2,焦素娟1,2,龙新华1,2
作者信息 +

Active vibration isolation platform based on feedback FxLMS-robust hybrid control algorithm

  • YANG Jinan1,2, JIAO Sujuan1,2, LONG Xinhua1,2
Author information +
文章历史 +

摘要

为解决传统FxLMS算法在收敛速度和稳定性之间存在的矛盾,以及次级通道模型不确定性对控制收敛性能的影响,将反馈FxLMS算法和混合灵敏度鲁棒控制器相结合,提出了一种反馈FxLMS-鲁棒混合控制算法,并在工程应用中常见的主动撑杆隔振平台上对该混合算法的振动控制性能进行仿真分析和试验验证。变载荷激励及控制通道变化仿真和试验结果均表明,不同激励下各个阶段的加速度响应衰减均超过80%,且与传统的FxLMS算法相比,所提出的混合控制算法具有更快的收敛速度和更强的鲁棒性。

Abstract

To address the contradiction between the convergence speed and stability in traditional FxLMS algorithms, as well as the impact of secondary channel model uncertainty on the control convergence performance, a feedback FxLMS robust hybrid control algorithm is proposed by combining the feedback FxLMS algorithm with a mixed sensitivity robust controller. The vibration control performance of the proposed hybrid control algorithm is simulated and verified by experiments on an active strut isolation platform in engineering applications. The simulation and experimental results of variable load excitation and control channel changes indicate that the acceleration response attenuation at each stage under different excitations exceeds 80%. Compared with the traditional FxLMS algorithm, the proposed hybrid control algorithm has faster convergence speed and stronger robustness.

关键词

主动撑杆隔振平台 / 混合控制 / 滤波最小均方 / 混合灵敏度

Key words

active strut isolation platform / hybrid control / FxLMS / mixed sensitivity

引用本文

导出引用
杨纪楠1, 2, 焦素娟1, 2, 龙新华1, 2. 基于反馈FxLMS-鲁棒混合控制算法的主动隔振平台研究[J]. 振动与冲击, 2024, 43(19): 59-67
YANG Jinan1, 2, JIAO Sujuan1, 2, LONG Xinhua1, 2. Active vibration isolation platform based on feedback FxLMS-robust hybrid control algorithm[J]. Journal of Vibration and Shock, 2024, 43(19): 59-67

参考文献

[1] 黄英博. 含不确定性动态的车辆悬架系统主动振动控制研究[D]. 昆明:昆明理工大学,2019.
[2] 管萍,吴希岩,戈新生. 基于Tube的挠性航天器模型预测姿态控制及主动振动控制[J]. 振动与冲击,2022, 41(16): 261-270.
GUAN Ping, WU Xi-yan, GE Xin-sheng. Tube-based model predictive attitude control and active vibration control for flexible spacecraft [J]. Journal of Vibration and Shock, 2022, 41(16): 261-270.
[3] LEE Y L, KIM D.H, PARK J S, et al. Vibration reduction simulations of a lift-offset compound heli-copter using two active control techniques[J]. Aerospace Science and Technology, 2020, 106: 1-15. 
[4] YANG J N, DENG J L, ZHAO J H, et al. A novel parallel multi-harmonic global multi-channel control algorithm for helicopter active vibration control[J]. Control Engineering Practice, 2023, 142: 105772.
[5] 李经良,陆 洋. 针对大型舰船的新型分布式主动振动控制算法[J]. 噪声与振动控制,2023,43(6):51-56.
LI Jing-liang, LU yang. A novel distributive active vibration control algorithm for large-sized ships[J]. Noise and Vibration Control, 2023,43(6):51-56.
[6] 杨铁军,石慧,李新辉,等. 一种基于智能减振器的舰船机械设备主动减振系统研究[J]. 振动工程学报,2017, 30(2):167-176.
YANG Tie-jun, SHI Hui, LI Xin-hui, et al. One active isolation system for marine machine based on smart isolators[J]. Journal of vibration Engineering, 2017, 30(2):167-176.
[7] 谢溪凌,任明可,黄修长,等. 基于主动艉支承的推进轴系横向振动抑制仿真与实验研究[J]. 振动与冲击,2020, 39(15):271-276. 
XIE Xi-lin, REN Ming-ke, HUANG Xiu-chang, et al. Simulation and tests for lateral vibration transmission suppression of a propulsion shafting system based on active stern support [J]. Journal of Vibration and Shock, 2020, 39(15):271-276.
[8] 章锐,韩志远,王朝政,等. 基于参考信号重建的双层隔振系统主动控制试验研究[J]. 振动与冲击,2023, 42(17):153-159.
ZHANG Rui, HAN Zhi-yuan, WANG Chao-zheng, et al. Test study on active control of two-stage vibration isolation system based on reference signal reconstruction[J]. Journal of Vibration and Shock, 2023, 42(17):153-159.
[9] 方昱斌,朱晓锦,高志远,等. 多频线谱激励下的混合自适应微振动主动控制[J]. 振动、测试与诊断,2021,41(1): 96-104.
FANG Yu-bin, ZHU Xiao-jin, GAO Zhi-yuan, et al. Hybrid adaptive algorithm for active micro-vibration control under multi narrowband disturbances[J]. Journal of Vibration, Measurement and Diagnosis, 2021,41(1): 96-104.
[10] SONG P C, ZHAO H Q. Filtered-x least mean square/fourth (FXLMS/F) algorithm for active noise control[J]. Mechanical System and Signal Processing, 2019, 120: 69-82. 
[11] WU C, YANG J N, LIU X X, et al. Active vibration control of heavy platform-struts structure[J]. Journal of Vibration and Control, 2023, 29(11-12):2752-2762.
[12] 王丽玮,夏品奇. 在主减速器斜撑杆上安装压电叠层作动器的直升机主动隔振[J]. 南京航空航天大学学报,2018, 50(2):233-238.
WANG Li-wei, XIA Pin-qi. Active vibration isolation of helicopter by using piezoelectric stack actuators installed on struts of main gearbox[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2018, 50(2):233-238. 
[13] 任明可.基于多轴控制的动力设备主被动隔振方法研究[D]. 上海:上海交通大学,2022.
[14] ABOULNASR T, MAYYAS K. A robust variable step-size LMS-type algorithm: analysis and simulations[J]. IEEE Transactions on Signal Processing, 1997, 45(3):631-639.
[15] 浦玉学. 自适应振动噪声主动控制若干关键问题研究[D]. 南京: 南京航空航天大学,2015.
[16] LANG K, SHANG L N, XIA P Q. Active vibration control of helicopter fuselage with large dynamic modeling errors[J]. AIAA Journal, 2022, 60(3):1895-1908.
[17] 马逊军. 主减速器引起的直升机舱内宽频噪声主动控制方法研究[D]. 南京: 南京航空航天大学,2018.
[18] MENG D, XIA P Q, SONG L S. MIMOMH feed-forward adaptive vibration control of helicopter fuselage by using piezoelectric stack actuators[J]. Journal of Vibration and Control, 2018, 24(23):5534-5545.
[19] LANG K, SHANG L N, XIA P Q., et al An excellent harmonic feedforward-sliding mode output feedback hybrid algorithm for helicopter active vibration control [J]. Journal of Vibration and Control, 2023, 29(15-16):3528-3543.
[20] LI W G, YANG Z C, LI K, et al. Hybrid feedback PID-FxLMS algorithm for active vibration control of cantilever beam with piezoelectric stack actuator[J]. Journal of Sound and Vibration, 2021, 509:116243.
[21] QIN Y F, LU Y, MA J C, et al. Active vibration control of helicopter maneuvering flight using feedforward-robust hybrid control based on reference signal reconstruction[J]. Shock and Vibration, 2021: 3153531.
[22] REN M K, XIE X L, ZHANG Z Y, et al. Subband reinforced adaptive feedback control algorithm in mechanical vibration control [J]. Journal of Vibration and Control, 2023, 29(3-4):736-745.

PDF(2922 KB)

Accesses

Citation

Detail

段落导航
相关文章

/