不对称齿距偏差人字齿轮大周期的三维振动特性分析

刘玄1, 方宗德2, 雷凤杰1, 张成光1, 郭芳3, 胡升阳4

振动与冲击 ›› 2024, Vol. 43 ›› Issue (19) : 83-93.

PDF(5168 KB)
PDF(5168 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (19) : 83-93.
论文

不对称齿距偏差人字齿轮大周期的三维振动特性分析

  • 刘玄1,方宗德2,雷凤杰1,张成光1,郭芳3,胡升阳4
作者信息 +

Large periodic 3-D vibration characteristics analysis of herringbone gears with asymmetric tooth pitch deviation

  • LIU Xuan1, FANG Zongde2, LEI Fengjie1, ZHANG Chengguang1, GUO Fang3, HU Shengyang4
Author information +
文章历史 +

摘要

为了揭示不对称齿距偏差对人字齿轮传动的影响,提出了一种不对称齿距偏差人字齿轮大周期的承载接触分析方法,得到人字齿轮副大周期的综合啮合刚度、轴向窜动量、综合啮合误差和左右侧斜齿轮副大周期的啮入冲击力。建立了不对称齿距偏差人字齿轮的动力学模型,对比了不同负载、不同转速下人字齿轮副的动态响应,分析了不对称的啮入冲击对左右侧斜齿轮副动态响应的影响。结果表明:不对称齿距偏差人字齿轮三维振动位移的频谱中,轴频成分最为明显,啮合频率及其倍频相对较小。端面振动加速度频谱中啮合频率及其倍频较为明显,且在啮合频率及其倍频两侧分布着一系列边频带。随着负载的增大,三维振动位移和三维振动加速度的频谱中,啮合频率及其倍频的幅值逐渐增大,而边频带成分的幅值逐渐减小。随着小轮转速超过共振转速,不对称的啮入冲击力对人字齿轮传动系统的三维振动加速度逐渐起主导作用,此时左右侧斜齿轮副的三维振动特性差别较明显。

Abstract

In order to reveal the influence of asymmetric pitch deviation on herringbone gear transmission, a loaded contact analysis method for large period of asymmetric pitch deviation herringbone gear was proposed. The comprehensive meshing stiffness, axial displacement, comprehensive meshing error, and meshing impact force of large period of left and right helical gear pairs were obtained. A dynamic model of asymmetric pitch deviation herringbone gear was established, and the dynamic response of the herringbone gear pair under different loads and speeds was compared. The influence of asymmetric meshing impact on the dynamic response of the left and right helical gear pairs was analyzed. The results show that in the spectrum of three-dimensional (3D) vibration displacement of asymmetric pitch deviation herringbone gear, the shaft frequency component is the most obvious, and the meshing frequency and its harmonics are relatively small. The meshing frequency and its harmonics are more prominent in the acceleration spectrum of end face vibration, and a series of sidebands are distributed on both sides of the meshing frequency and its harmonics. As the load increases, the amplitude of the meshing frequency and its harmonics in the spectrum of 3D vibration displacement and 3D vibration acceleration gradually increases, while the amplitude of the sideband components gradually decreases. As the rotational speed of the pinion exceeds the resonant speed, the asymmetric meshing impact force gradually dominates the 3D vibration acceleration of the herringbone gear transmission system, and at this time, the difference in 3D vibration characteristics between the left and right helical gear pairs is more obvious.

关键词

不对称齿距偏差 / 人字齿轮 / 大周期 / 轴向窜动量 / 三维振动特性

Key words

asymmetric pitch deviation / herringbone gear / large period / axial displacement / three-dimensional vibration characteristics

引用本文

导出引用
刘玄1, 方宗德2, 雷凤杰1, 张成光1, 郭芳3, 胡升阳4. 不对称齿距偏差人字齿轮大周期的三维振动特性分析[J]. 振动与冲击, 2024, 43(19): 83-93
LIU Xuan1, FANG Zongde2, LEI Fengjie1, ZHANG Chengguang1, GUO Fang3, HU Shengyang4. Large periodic 3-D vibration characteristics analysis of herringbone gears with asymmetric tooth pitch deviation[J]. Journal of Vibration and Shock, 2024, 43(19): 83-93

参考文献

[1]  Li Z, Wang S, Li L, et al. Study on multi-clearance nonlinear dynamic characteristics of herringbone gear transmission system under optimal 3d modification[J]. Nonlinear Dynamic, 2023, 111: 4237-4266.
[2]  Zhou C, Ning L, Wang H, et al. Effects of centring error and angular misalignment on crack initiation life in herringbone gears[J]. Engineering Failure Analysis, 2021, 120:105082.
[3] 常乐浩, 刘更, 吴立言. 齿轮综合啮合误差计算方法及对系统振动的影响[J]. 机械工程学报, 2015, 51(01): 123-130.
CHANG Le-hao, LIU Geng, WU Li-yan. Determination of composite meshing errors and its influence on the vibration of gear system[J]. Journal of Mechanical Engineering, 2015, 51(01): 123-130.
[4] 张涛, 吴勇军, 吴静, 等. 制造误差影响齿轮副啮合的接触有限元分析方法[J]. 振动与冲击, 2015, 34(3): 43-50.
ZHANG Tao, WU Yong-jun, WU Jing, et al. Analysis of machining errors’ effect on gear pair meshing using contact finite element method[J]. Journal of Vibration and Shock, 2015,34(3): 43-50.
[5] 王奇斌, 张义民. 考虑齿距偏差的直齿轮转子系统振动特性分析[J]. 机械工程学报, 2016, 52(13): 131-140.
WANG Qi-bin, ZHANG Yi-min. Vibration characteristics analysis of a spur gear rotor system with the pitch deviation[J]. Journal of Mechanical Engierring, 2016, 52(13): 131-140.
[6] Guo F, Fang Z. The statistical analysis of the dynamic performance of a gear system considering random manufacturing errors under different levels of machining precision[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2019, 234(1): 3-18.
[7] Liu P, Zhu L, Gou X, et al. Dynamics modeling and analyzing of spur gear pair with pitch deviation considering time-varying contact ratio under multi-state meshing[J]. Journal of Sound and Vibration, 2021, 513: 116411.
[8] Liu P, Zhu L, Gou X, et al. Modeling and analyzing of nonlinear dyanmics for spur gear pair with pitch deviation under multi-state meshing[J]. Mechanism and Machine Theory, 2021, 163: 104378.
[9] 刘鹏飞, 朱凌云, 苟向锋, 等. 计及短周期误差的直齿轮副近周期运动及其辨识[J]. 力学学报, 2022, 54(03): 786-799.
LIU Peng-fei, ZHU Ling-yun, GOU Xiang-feng, et al. Neighboring periodic motion and its identification for spur gear pair with short-period errors[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(03): 786-799.
[10] 戴日辉, 侯梦琪, 郭家舜, 等. 高速大功率人字齿轮传动的轴向振动特性研究[J]. 机械传动, 2014, 38(7): 13-17.
DAI Ri-hui, HOU Meng-qi, GUO Jia-shun, et al. Research of the axial characteristics of high speed and high power double helical gear transmission[J]. Journal of Mechanical Transmission, 2014, 38(7): 13-17.
[11] Chen S, Tang J, Li Y, et al. Rotordynamics analysis of a double-helical gear transmission system[J]. Meccanica, 2016, 51(1): 251-268.
[12] Chen S, Tang J. Effects of staggering and pitch error on the dynamic response of a double-helical gear set[J]. Journal of Vibration and Control, 2017, 23(11): 1844-1856.
[13] Kang M, Kahraman A. An experimental and theoretical study of quasi-static behavior of double-helical gear sets[J]. Journal of Mechanical Design, 2020, 143: 1-25.
[14] Kang M, Kahraman A. An experimental and theoretical study of the dynamic behavior of double-helical gear sets[J]. Journal of Sound and Vibration, 2015, 350: 11-29.
[15] 袁冰, 常山, 刘更, 等. 考虑齿距累积偏差的人字齿轮系统动态特性分析[J]. 振动与冲击, 2020, 39(03): 120-126.
YUAN Bing, CHANG Shan, LIU Geng, et al. Dynamic characteristics of a double helical gear system considering accumulation pitch error[J]. Journal of Vibration and Shock, 2020, 39(03):120-126.
[16] Liu X, Fang Z, Yin X, et al. A novel calculation method of long period pinion axial displacement and meshing impact force for double helical gear considering asymmetry error[J]. Mechanism and Machine Theory, 2022, 171:104775.
[17] Liu X, Fang Z, Yin X, et al. Three-dimensional static meshing characteristics analysis and vibration reduction design of a double helical gear[J]. Journal of Advanced Mechnical Design, Systems, and Manufacturing, 2021,15(6):1-13.
[18] YUAN Bing, CHANG Le-hao, LIU Geng, et al. An efficient three-dimensional dynamic contact model for cylindrical gear pairs with distributed tooth flank errors[J]. Mechanism and Machine Theory, 2020, 152: 103930.

PDF(5168 KB)

118

Accesses

0

Citation

Detail

段落导航
相关文章

/