基于不同高阶剪切变形理论的Pasternak地基上FG-CNTRC梁自由振动及屈曲无网格分析

杨立军1,彭林欣2,陈卫3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 1-11.

PDF(1743 KB)
PDF(1743 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 1-11.
论文

基于不同高阶剪切变形理论的Pasternak地基上FG-CNTRC梁自由振动及屈曲无网格分析

  • 杨立军1,彭林欣2,陈卫3
作者信息 +

Free vibration and buckling analysis of functionally graded carbon nanotube-reinforced composite beams on Pasternak foundation under high-order shear deformation theory

  • YANG Lijun1,PENG Linxin2,CHEN Wei3
Author information +
文章历史 +

摘要

功能梯度碳纳米管增强复合材料(functionally graded carbon nanotube-reinforced composite, FG-CNTRC)作为新一代先进复合材料,因其优越的力学性能而被研究者们广泛关注。本文以Pasternak地基上FG-CNTRC梁为研究对象,基于不同高阶剪切变形理论,将一种具有插值特性的无网格法—稳定移动克里金插值(stabilized moving kriging interpolation, SMKI)应用于求解Pasternak地基上FG-CNTRC梁的自由振动及屈曲问题。基于稳定移动克里金插值和不同高阶剪切变形理论给出FG-CNTRC梁的位移场,利用Hamilton原理和最小势能原理分别推导了Pasternak地基上FG-CNTRC梁的自由振动和屈曲控制方程。采用MATLAB编制了相关程序,将本文解与解析解或文献解对比,证明了本文方法在计算Pasternak地基上FG-CNTRC梁自由振动与屈曲的有效性及准确性。文末还讨论了不同高阶剪切变形理论、地基系数、碳纳米管体积分数等对其自振频率和屈曲临界荷载的影响。

Abstract

As a new generation of advanced composites, functionally graded carbon nanotube reinforced composite (FG-CNTRC) has been widely concerned by researchers because of their excellent mechanical properties. In this paper, the FG-CNTRC beam on Pasternak foundation is taken as the research object. Based on different high-order shear deformation theories, a meshless method with interpolation characteristics, the stable moving Kriging interpolation (SMKI) is applied to solve the free vibration and buckling problems of FG-CNTRC beam on Pasternak foundation. Based on stable Kriging interpolation and different high-order shear deformation theory, the displacement field of FG-CNTRC beam is derived. The free vibration and buckling control equations of FG-CNTRC beam on Pasternak foundation are obtained by using Hamilton principle and minimum potential energy principle respectively. The relevant program is compiled by MATLAB. The comparison between the solution in this paper and the analytical solution or the literature solution proves the effectiveness and accuracy of this method in calculating the free vibration and buckling of FG-CNTRC beam on Pasternak foundation. At the end of the paper, the effects of different high-order shear deformation theory, foundation coefficient and carbon nanotube volume fraction on the natural frequency and buckling critical load are also discussed.

关键词

功能梯度碳纳米管增强复合材料梁 / 稳定移动克里金插值 / 不同高阶剪切变形理论 / Pasternak地基 / 自由振动 / 屈曲

Key words

functionally graded carbon nanotube-reinforced composite beam / stable moving kriging interpolation / different higher-order shear deformation theory / Pasternak foundation / free vibration / buckling

引用本文

导出引用
杨立军1,彭林欣2,陈卫3. 基于不同高阶剪切变形理论的Pasternak地基上FG-CNTRC梁自由振动及屈曲无网格分析[J]. 振动与冲击, 2024, 43(2): 1-11
YANG Lijun1,PENG Linxin2,CHEN Wei3. Free vibration and buckling analysis of functionally graded carbon nanotube-reinforced composite beams on Pasternak foundation under high-order shear deformation theory[J]. Journal of Vibration and Shock, 2024, 43(2): 1-11

参考文献

[1] IIJIMA S, Helical microtubles of graphitic carbon[J], Nature, 1991, 354: 56-58. [2] SHEN H S, Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments[J], Composite Structures, 2009, 91(1): 9-19. [3] LIEW K M, LEI Z X, ZHANG L W, Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review[J], Composite Structures, 2015, 120: 90-97. [4] 沈惠申, 功能梯度碳纳米管增强复合材料结构建模与分析研究进展[J], 力学进展, 2016, 46: 478-505. SHEN Huishen, Modeling and analysis of functionally graded carbon nanotube reinforced composite structures: A review[J], Advances in Mechanics, 2016, 46: 478-505. [5] GARG A, CHALAK H D, BELARBI M O, et al, Estimation of carbon nanotubes and their applications as reinforcing composite materials–An engineering review[J], Composite Structures, 2021, 272(4): 114234. [6] 王雄, 高英山, 张顺琦, 等, 压电集成碳纳米管CNT增强功能梯度结构非线性建模与仿真[J], 振动与冲击, 2021, 40(06), 278-282. WANG Xiong, GAO Yingshan, ZHANG Shunqi, et al, Nonlinear modeling and simulation of piezoelectric integrated carbon reinforced functionally graded structures[J], Journal of vibration and shock, 2021, 40(06), 278-282. [7] KE L, YANG J, KITIPORNCHAI S, Dynamic stability of functionally graded carbon nanotube-reinforced composite beams[J], Mechanics of Advanced Materials and Structures, 2013, 20(1): 28-37. [8] LIN F, XIANG Y, Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories[J], Applied Mathematical Modelling, 2014, 38(15-16): 3741-3754. [9] VO-DUY T, HO-HUU V, NGUYEN-THOI T, Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method[J], Frontier of Structure and Civil Engineering: English version, 2019, 13(2): 1-13. [10] YAS M H, SAMADI N, Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation - ScienceDirect[J], International Journal of Pressure Vessels and Piping, 2012, 98(10): 119-128. [11] SHEN H S, XIANG Y, Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments[J], Engineering Structures, 2013, 56(6): 698-708. [12] WATTANASAKULPONG N, UNGBHAKORN V, Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation[J], Computational Materials Science, 2013, 71: 201-208. [13] 余阳, 杨洋, 基于非局部应变梯度欧拉梁模型的充流单壁碳纳米管波动分析[J], 振动与冲击, 2017, 36(08): 1-8. YU Yang, YANG Yang, Wave propagation of fluid-filled single-walled carbon nanotubes based on the nonlocal-strain gradient theory[J], Journal of vibration and shock, 2017, 36(08): 1-8. [14] BENSAID I, KERBOUA B, Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature- dependent material properties resting on elastic foundations[J], Advances in aircraft and spacecraft science, 2019, 6(3): 207-223. [15] 范健宇, 功能梯度碳纳米管增强复合材料梁、壳结构自由振动行为的数值研究[D]:[学位论文], 西安: 西安电子科技大学, 2019. FAN Jianyu. Numerical study on the free vibration behaviors of functionally graded CNT-Reinforced composite beams and shells[D]. Xian: Xidian universtiy, 2019. [16] 张雄, 刘岩, 马上, 无网格法的理论及应用[J], 力学进展, 2009, 39(01), 1-36. ZHANG Xiong, LIU Yang, MA Shang. Meshfree methods and their applications[J]. Advances in Mechanics, 2009, 39(01): 1-36. [17] KRIGE D G, A statistical approach to some basic mine valuation problems on the Witwatersrand[J], Journal of the Southern African Institute of Mining and Metallurgy, 1951, 58(8): 119-139. [18] MATHERON, G, Principles of geostatistics[J], Econ. Geol, 1963, 58(8): 1246-1266. [19] SACKS J, WELCH W J, Mithchell T J, et al, design and analysis of computer experiments[J], statistial science, 1989, 4(4): 409-435. [20] LEI, GU, Moving kriging interpolation and element-free Galerkin method[J], International Journal for Numerical Methods in Engineering, 2003, 56: 1-11. [21] TU S, YANG H, LEILEI D, et al, A stabilized moving Kriging interpolation method and its application in boundary node method[J], Engineering Analysis with Boundary Elements, 2019, 100: 14-23. [22] SHEN H S, Functionally graded materials:nonlinear analysis of plates and shells, Boca Raton, FL: CRC Press, 2008. [23] KWON H, BRADBURY C R, LEPAROUX M, Fabrication of functionally graded carbon nanotube‐reinforced aluminum matrix composite[J], Advanced engineering materials, 2011, 13(4): 325-329. [24] PASTERNAK P L, On a new method of an elastic foundation by means of two foundation constants[J], Gosudarstvennoe Izdatelstvo Literaturi Po Stroitelstuve I Arkhitekture, 1954. [25] TIMOSHENKO S P, on the correction for shear of the differential equation for transverse vibrations of prismatic bars[J], Philosophical Magazine, 1921, 41: 744-746. [26] REDDY J N, A Simple Higher-Order Theory for Laminated Composite Plates[J], Journal of Applied Mechanics, 1985, 51(4): 745-752. [27] TOURATIER M, An efficient standard plate theory[J], International Journal of Engineering Science, 1991, 29(8): 901-916. [28] SOLDATOS K P, A transverse shear deformation theory for homogeneous monoclinic plates[J], Acta Mechanica, 1992, 94(3): 195-220. [29] KARAMA M, AFAQ K S, MISTOU S, Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity[J], International Journal of Solids and Structures, 2003, 40(6): 1525-1546. [30] HAN Y, ELLIOTT J, Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites[J], Computational Materials Science, 2007, 39(2): 315-323. [31] GRIEBEL M, HAMAEKERS J, Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites[J], Computer Methods in Applied Mechanics and Engineering, 2004, 193(17-20): 1773-1788.

PDF(1743 KB)

714

Accesses

0

Citation

Detail

段落导航
相关文章

/