高烈度区波纹管连接预制拼装桥墩抗震性能研究

刘斌1,黄永福1,宋彦臣2,韩强2,白洪涛1,丁开1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 123-137.

PDF(6953 KB)
PDF(6953 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 123-137.
论文

高烈度区波纹管连接预制拼装桥墩抗震性能研究

  • 刘斌1,黄永福1,宋彦臣2,韩强2,白洪涛1,丁开1
作者信息 +

Seismic performances of prefabricated assembled piers connected with corrugated pipes in high intensity seismic areas

  • LIU Bin1,HUANG Yongfu1,SONG Yanchen2,HAN Qiang2,BAI Hongtao1,DING Kai1
Author information +
文章历史 +

摘要

为探究预制桥墩在高烈度区应用的可行性,提出一种新型的内外波纹管连接墩柱-盖梁节点。设计制作了2个相似比为1:3的试件,分别为内外波纹管连接桥墩(IOCPCP)和现浇桥墩(CIP)。采用拟静力试验方法与有限元数值模拟结合的方法,分析试件的滞回性能、耗能能力、曲率等,并讨论其破坏模式。试验结果表明:试件破坏模式均为墩底塑性铰破坏;IOCPCP试件在承载力、滞回、耗能等方面与现浇桥墩类似,并具有更好的延性能力;IOCPCP试件在大纵漂率6%的作用下仍能保持峰值荷载88%以上的承载力;针对墩柱纵筋强度和内部补偿钢筋长度参数进行有限元模型分析,认为提高墩柱纵筋强度可以使墩底塑性铰区域略有减小,但对外围波纹管内灌浆料强度要求更高;内部补偿钢筋长度较短时,易出现双塑性铰现象。试验结果可为预制拼装桥墩在高烈度地区的工程应用提供参考。

Abstract

In order to investigate the feasibility of prefabricated assembled piers in high-intensity areas, a new pier-cap joint connected by the inner and outer corrugated pipes is proposed. Two specimens with a scale ratio of 1:3 were designed and fabricated as the internal and external corrugated pipe-connected pier (IOCPCP) and cast-in-place pier (CIP), respectively. By using the method of quasi-static test and finite element numerical simulation, the hysteretic performance, energy dissipation capacity, and curvature of the specimen are analyzed, as well as the failure mode. The test results show that the specimens are all damaged in the plastic hinge zone at the bottom of the pier; the IOCPCP specimen is similar to the CIP in bearing capacity, hysteresis, and energy dissipation, and has better ductility; the IOCPCP specimen can still maintain the bearing capacity of more than 88% of the peak load under the drift ratio of 6%. The parameter analysis accounting for the strength of the longitudinal reinforcement and the length of the internal compensation reinforcement of the pier column was carried out It is considered that the increase in the strength of the pier column longitudinal reinforcement can slightly reduce the plastic hinge area at the bottom of the pier, but requires higher strength of the grout in the peripheral corrugated pipes; when the length of the internal compensation reinforcement is short, double plastic hinges are prone to occur. The test results can provide a reference for the engineering application of prefabricated assembled piers in high-intensity areas.

关键词

桥梁工程 / 预制桥墩 / 拟静力试验 / 波纹管连接 / 高烈度区 / 抗震性能

Key words

bridge engineering / precast bridge pier / quasi-static test / corrugated pipe connection / high-intensity area / seismic performance

引用本文

导出引用
刘斌1,黄永福1,宋彦臣2,韩强2,白洪涛1,丁开1. 高烈度区波纹管连接预制拼装桥墩抗震性能研究[J]. 振动与冲击, 2024, 43(2): 123-137
LIU Bin1,HUANG Yongfu1,SONG Yanchen2,HAN Qiang2,BAI Hongtao1,DING Kai1. Seismic performances of prefabricated assembled piers connected with corrugated pipes in high intensity seismic areas[J]. Journal of Vibration and Shock, 2024, 43(2): 123-137

参考文献

[1] 许子宜, 张子飏, 徐腾飞. 预制装配式混凝土桥梁结构2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(S1): 288-296. XU Zi-yi, ZHANG Zi-yang, XU Teng-fei. State-of-the-art review of precast concrete bridge structures in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 288-296. [2] 欧智菁, 颜建煌, 俞杰,等. 装配式圆钢管约束混凝土桥墩抗震性能研究[J]. 振动与冲击, 2022, 41(18): 47-54. OU Zhi-jing,YAN Jian-huang,YU Jie,et al. Seismic performances of fabricated circular steel tube confined concrete piers[J]. Journal of Vibration and Shock, 2022, 41(18): 47-54. [3] 李辰, 江辉, 郭辉,等. 组合式剪力键预制拼装桥墩结构及其抗震性能研究[J]. 振动与冲击, 2021, 40(20):117-126. LI Chen,JIANG Hui,GUO Hui, et al. Precast segmental bridge pier structure with combined shear keys and seismic performance analysis[J]. Journal of Vibration and Shock, 2021, 40(20): 117-126. [4] 张子飏, 邓开来, 徐腾飞. 预制装配式混凝土桥梁结构2019年度研究进展[J]. 土木与环境工程学报(中英文), 2020, 42(05): 183-191. Zhang Zi-yang, Deng Kai-lai, Xu Teng-fei. State-of-the-art review of precast concrete bridge structures in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42(5): 183-191. [5] ZHANG G, HAN Q, XU K, et al. Quasi-static tests of CFST embedded RC column-to-precast cap beam with socket connection[J]. Engineering Structures, 2021, 241: 112443. [6] 李文武, 邱文亮, 田甜,等. 部分埋置核心钢管组合桥墩抗震性能试验研究[J]. 振动与冲击, 2021, 40(9): 19-29. LI Wen-wu, QIU Wen-liang, TIAN Tian, et al. Experimental study on seismic behavior of bridge columns with a partially-embedded core steel tube inside[J]. Journal of Vibration and Shock, 2021, 40(9): 19-29. [7] 邱文亮, 田甜, 张哲. 反复荷载作用下钢管混凝土组合桥墩抗震性能试验研究[J]. 振动与冲击, 2019, 38(17):156-164. QIU Wen-liang, TIAN Tian, ZHANG Zhe. Experimental study on the seismic behavior of steel tube reinforced concrete bridge columns under cyclic loading[J]. Journal of Vibration and Shock, 2019, 38(17): 156-164. [8] WANG Z, QU H, LI T, et al. Quasi-static cyclic tests of precast bridge columns with different connection details for high seismic zones[J]. Engineering Structures, 2018, 158: 13-27. [9] 刘雪山, 李建中, 张宏杰, 等. 不同构造下的预制拼装钢管混凝土桥墩抗震性能试验[J]. 中国公路学报, 2021, 34(11): 116-128. LIU Xue-shan, LI Jian-zhong, ZHANG Hong-jie, et al. Experimental analysis of seismic performance of precast assembled concrete filled steel tube piers under different structures[J]. China Journal of Highway and Transport, 2021, 34(11): 116-128. [10] 贾俊峰, 魏博, 欧进萍,等. 外置可更换耗能器的预制拼装自复位桥墩抗震性能试验研究[J]. 振动与冲击, 2021, 40(5):154-162. JIA Jun-feng, WEI Bo, OU Jin-ping, et al. Tests for seismic performance of prefabricated self-centering bridge piers with external replaceable energy dissipator[J]. Journal of Vibration and Shock, 2021, 40(5): 154-162. [11] 贾俊峰,边嘉琛,白玉磊,魏博,顾冉星,周述美. 自复位摇摆双柱式桥墩抗震能力数值仿真分析[J]. 振动与冲击, 2023, 42(1): 89-97. JIA Jun-feng, BIAN Jia-chen, BAI Yu-lei, WEI Bo, GU Ran-xing, ZHOU Shu-mei. Numerical simulation and parametric analysis for aseismic capacity of self-resetting swing double-column pier[J]. Journal of Vibration and Shock, 2023, 42(1): 89-97. [12] 陈俊,蒋恩浩,刘艳芝,等.预埋波纹管浆锚高强锚栓抗拔性能试验研究[J]. 建筑钢结构进展,2019,21(06):16-23+134. CHEN Jun, JIANG En-hao, LIU Yan-zhi, et al. Experimental study on pull-out performance of high-strength anchor bolt of embedded corrugated sleeve with grout[J]. Progress in Steel Building Structures, 2019. 21(06):16-23+134. [13] 陈俊,肖岩,尹齐.预埋波纹套管的钢筋-高强浇筑料黏结锚固性能试验研究[J]. 建筑结构学报,2015,36(07):140-147. CHEN Jun, XIAO Yan, YIN Qi. Bonding strength of rebar anchorage in embedded corrugated sleeve with high strength grout[J]. Journal of Building Structures, 2015, 36(07):140-147. [14] TAZARV M, SAIIDI M S. Design and construction of UHPC-filled duct connections for precast bridge columns in high seismic zones[J]. Structure and Infrastructure Engineering, 2017, 13(6): 743-753. [15] CHEN J, ZHAO C, DING F X, et al. Mechanical performance of the grouted lapped double reinforcements anchored in embedded corrugated sleeves[J]. Structures, 2020, 28:1354-1365. [16] 王志强, 卫张震, 魏红一, 等. 预制拼装联接件形式对桥墩抗震性能的影响[J]. 中国公路学报,2017, 30(5): 74-80. WANG Zhi-qiang, WEI Zhang-zhen, WEI Hong-yi, et al. Influences of precast segmental connector forms on seismic performance of bridge pier[J]. China Journal of Highway and Transport, 2017, 30(5): 74-80. [17] 吴佳东, 颜东煌, 陈星烨,等. 灌浆波纹管连接的预制拼装桥墩抗震性能分析[J]. 公路交通科技,2021, 38(7):77-84. WU Jia-dong, YAN Dong-huang, CHEN Xing-ye, et al. Analysis on seismic performance of precast bridge piers connected by grouting bellows[J]. Journal of Highway and Transportation Research and Development,2021,38(7): 77-84. [18] QU H, LI T, WANG Z, et al. Investigation and verification on seismic behavior of precast concrete frame piers used in real bridge structures: Experimental and numerical study[J]. Engineering Structures, 2018, 154: 1-9. [19] 王洁金, 黄智华, 付凯敏. 灌浆金属波纹管连接预制拼装桥墩有限元计算分析[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(06): 1159-1164. WANG Jie-jin, HUANG Zhi-hua, FU Kai-min. Finite element analysis of precast segmental bridge piers connected with grouting metal corrugated pipe[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2019, 43(06): 1159-1164. [20] FAN J J, FENG D C, WU G, et al. Experimental study of precast RC column-foundation assemblies with two different connection methods and using large-diameter reinforcing bars[J]. Engineering Structures, 2020, 205: 110075. [21] XIA Z, GE J, LIN Y, et al. Shake table study on precast segmental concrete double-column piers[J]. Earthquake Engineering and Engineering Vibration, 2020, 19(3): 705-723. [22] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述•2021[J]. 中国公路学报, 2021, 34(2): 1-97. Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97. [23] 葛继平, 夏樟华, 江恒. 灌浆波纹管装配式桥墩双向拟静力试验[J]. 中国公路学报, 2018, 31(12): 221-230,266. GE Ji-ping, XIA Zhang-hua, JIANG Heng. Biaxial quasi-static experiment of precast segmental bridge piers with grouting corrugated pipe connection[J]. China Journal of Highway and Transport, 2018, 31(12): 221-230,266. [24] 夏樟华, 余舟扬, 葛继平, 等. 灌浆波纹管装配式PC双柱墩双向拟静力试验[J]. 中国公路学报, 2021, 34(1): 93-103. XIA Zhang-hua, YU Zhou-yang, GE Ji-ping, et al. Bi-axial quasi-static experiment for assembled double-column piers with grouting metal corrugated pipe and prestressed tendons[J]. China Journal of Highway and Transport, 2021, 34(1): 93-103. [25] WANG Z, WU C, LI T, et al. Experimental study on the seismic performance of improved grouted corrugated duct connection (GCDC) design for precast concrete bridge column[J]. Journal of Earthquake Engineering, 2020:26(2) 1-22. [26] 刘钊, 卓为顶, 张建东, 等. 配置高强钢筋与普通钢筋的预制桥墩滞回性能试验[J]. 中国公路学报, 2018, 31(12): 204-210. LIU Zhao, ZHUO Wei-ding, ZHANG Jian-dong, et al. Experiment on hysteretic behaviors of precast piers with high-strength and conventional steel rebar[J]. China Journal of Highway and Transport, 2018, 31(12): 204-210. [27] 王景全, 王震, 高玉峰,等. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 3:1―23. WANG Jin-quan, WANG Zhen, GAO Yu-feng, et al. Review on aseismic behavior of precast piers: new material, new concept and new application[J]. Engineering Mechanics, 2019, 3:1-23. (in Chinese) [28] Tazarv Mostafa, Saiidi M Saiid. UHPC-filled duct connections for accelerated bridge construction of RC columns in high seismic zones[J]. Engineering Structures, 2015, 99:413-422. [29] 张升旺, 宋彦臣, 韩强. 新型波纹管-UHPC槽连接预制拼装桥墩抗震性能数值模拟分析[J].市政技术, 2021, 39(10): 58-63+78. ZHANG Sheng-wang, SONG Yan-chen, HAN Qiang. Numerical simulation analysis on seismic performance of precast segmental bridge piers connected by novel corrugated Pipe-UHPC slot[J]. Municipal Engineering Technology, 2021, 39(10): 58-63+78. [30] 杜修力, 陈明琦, 韩强. 钢筋混凝土空心桥墩抗震性能试验研究[J]. 振动与冲击, 2011, 30(11):254-259. Du Xiu-li, Chen Ming-qi, Han Qiang. Experimental evaluation of the seismic performance of reinforced concrete hollow bridge columns[J]. Journal of Vibration and Shock, 2011, 30(11): 254-259. [31] ZHANG G, HAN Q, XU K, et al. Numerical analysis and design method of UHPC grouted RC column-footing socket joints[J]. Engineering Structures, 2023, 281: 115755. GAO X, SHEN, CHEN G, PANG R, MAO M. Experimental and numerical study on axial compressive behaviors of reinforced UHPC-CFST composite columns [J]. Engineering Structures, 2023, 278: 115315. [32] GB 50010-2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010. Code for design of concrete structures, GB50010-2010[S]. Beijing: China Architecture Press,2010. (in Chinese) [33] 邓宗才, 姚军锁. 高强钢筋约束超高性能混凝土柱轴心受压本构模型研究[J]. 工程力学, 2020, 37(5): 120-128. DENG Zong-cai, YAO Jun-suo. The axial compression stress-strain model for ultra-high performance concrete columns confined by high-strength stirrups [J]. Engineering Mechanics, 2020, 37(5): 120-128. [34] Gao X L, Wang J Y. Experimental and numerical study on the tensile behaviours of wet joints in steel-UHPC composite decks using a novel tensile test setup[J]. Materials and Structures, 2021, 54(93): 1-16. [35] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J].工程力学, 2013(4): 59–67. NIE Jian-guo, WANG Yu-hang. Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures[J]. Engineering Mechanics, 2013, 30(4): 59-67. (in Chinese) [36] 江见鲸, 陆新征, 叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005. JIANG Jian-jing, LU Xin-zheng, YE Lie-ping. Finite Element Analysis of Concrete Structure[M]. Tsinghua University Press,2005. [37] Krahl P A, Carrazedo R, Debs M E. Mechanical damage evolution in UHPFRC: Experimental and numerical investigation[J]. Engineering Structures, 2018, 170(sep.1):63-77. [38] Gao X L, Wang J Y. Experimental and numerical study on the tensile behaviours of wet joints in steel-UHPC composite decks using a novel tensile test setup[J]. Materials and Structures, 2021, 54(93): 1-16. [39] Kupka D, Huber N, Lilleodden E T. A combined experimental-numerical approach for elasto-plastic fracture of individual grain boundaries[J]. Journal of the Mechanics & Physics of Solids, 2014, 64(1):455-467. [40] Patryk R, Pawel W. Failure analysis of thin-walled composite profiles subjected to axial compression using progressive failure analysis (PFA) and cohesive zone model (CZM) [J]. Composite Structures, 2021,262:113597. [41] 陆新征,叶列平,缪志伟.建筑抗震弹塑性分析—原理、模型与在ABAQUS,MSC.MARC和SAP2000上的实践[M].北京:中国建筑工业出版社,2009. Lu Xin-zheng, Ye Lie-ping, Miao Zhi-wei. Elasto-plastic analysis of buildings against earthquake—theory, model and implementation on ABAQUS, MSC.MARC and SAP2000[M]. Beijing: China Architecture and Building Press,2009. (in Chinese)

PDF(6953 KB)

639

Accesses

0

Citation

Detail

段落导航
相关文章

/