特高压换流站阀厅的金属屋面系统在风荷载作用下易发生屋面表层风揭事故。为深入探讨该类建筑屋面的风压极值特性,本文基于风洞试验分别探讨了大气边界层(atmospheric-boundary-layer ,ABL)风、壁面射流、均匀湍流三种风场作用下的屋面风压特性,比较了平均风剖面、风速、风向、湍流强度等因素对屋面风压的影响,结果表明:阀厅屋盖迎风前缘负风压最大,且控制风向角在45°左右;壁面射流风场下平均风压系数与脉动风压系数均超过大气边界层风场的结果;风速对阀厅屋盖的负风压系数均值和极值影响较小,而湍流度对风压系数的极值影响较大;大气边界风场时,《屋盖结构风荷载标准》(JGJ/T 481-2019)的最不利风压系数建议值偏于安全;而在壁面射流风场下,阀厅屋盖全风向最不利风压系数在所有区域都大于JGJ/T 481-2019的建议值,设计中应加以重视。
Abstract
The damage of the roof of the UHV converter station usually occurs under wind load. In order to reveal the mechanism of wind-induced failure of the roof, this paper studies the wind pressure characteristics on the roof under three wind fields that includes atmospheric-boundary-layer (ABL) wind, wall-jet-flow and homogeneous turbulence flow. Based on wind tunnel test, the influences of mean-wind-speed profile, wind speed, wind direction and turbulence intensity on the wind pressure are compared. The results show that the negative wind pressure on the windward edge of the roof is largest, and the control wind direction is around 45°. In the wall-jet flow, the fluctuating wind pressure and extreme wind pressure is larger than that in the ABL flow. The wind speed has little influence on the mean and extreme value of the negative wind pressure coefficient on the roof, while the turbulence intensity has great influence on the extreme value of the wind pressure coefficient. It is also found from the result of the test that the extreme wind pressure on the roof of the UHV converter station in ABL flow suggested by the "Roof structure wind load standard" (JGJ/T 481-2019) is safe, while the extreme wind pressure in wall-jet flow is the larger than that suggested by JGJ/T 481-2019, which should pay extra attention in the design.
关键词
阀厅屋盖 /
大气边界层风 /
壁面射流 /
均匀湍流 /
极值风压系数
{{custom_keyword}} /
Key words
the UHV converter station roof /
atmospheric boundary layer wind /
wall-jet flow /
homogeneous turbulence flow /
extreme wind pressure coefficient
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009-2012 [S]. 北京:中国标准出版社, 2012.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for building structural load: GB 50009-2012 [S]. Beijing:Standards Press of China, 2012.
[2] TIELEMAN H W. Wind tunnel simulation of wind loading on low-rise structures: a review [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2003, 91(12-15): 1627-49.
[3] TIELEMAN H W, HAJJ M R, REINHOLD T A. Wind tunnel simulation requirements to assess wind loads on low-rise buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998.
[4] HOXEY R, RICHARDS P, ROBERTSON A, et al. Reynolds number effects on wind loads on buildings [J]. 2013.
[5] HOXEY R P, REYNOLDS A M, RICHARDSON G M, et al. Observations of Reynolds number sensitivity in the separated flow region on a bluff body [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 73(3): 231-49.
[6] 傅继阳,谢壮宁,倪振华. 大跨悬挑平屋盖结构风荷载特性的试验研究 [J]. 土木工程学报, 2003, (10): 7-14.
FU Ji-yang, XIE Zhuang-ning, NI Zhen-hua. Experimental study on wind load characteristics of long-span cantilever flat roof structure[J]. China Civil Engineering Journal, 2003, (10): 7-14.
[7] 董欣,叶继红. 不同风场下大跨平屋盖表面锥形涡诱导的风压特性研究 [J]. 土木工程学报, 2012, 45(10): 1-12.
DONG Xin, YE Ji-hong. Study on wind pressure characteristics induced by conical vortex on the surface of long-span flat roof under different wind fields[J]. China Civil Engineering Journal, 2012, 45(10): 1-12.
[8] 秦乐,田玉基. 某大跨平屋盖表面风荷载特性研究 [J]. 建筑结构, 2012, 42(2): 160-4.
QIN Le, TIAN Yu-ji. Study on surface wind load characteristics of a large span flat roof[J]. Building Structure, 2012, 42(2): 160-4.
[9] LETCHFORD C W, CHAY M T. Pressure distributions on a cube in a simulated thunderstorm downburst. Part B: moving downburst observations [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2002, 90(7): 733-53.
[10] CHAY M T, LETCHFORD C W. Pressure distributions on a cube in a simulated thunderstorm downburst - Part A: Stationary downburst observations [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(7): 711-32.
[11] 王超,汪之松,李正良. 冲击射流与壁面射流风剖面特征比较和影响因素参数化分析 [J]. 工程力学, 2015, 32(11): 8.
WANG Chao, WANG Zhi-song, LI Zheng-liang. Comparison of wind profile characteristics and parametric analysis of influencing factors of impact jet and wall jet wind[J]. Engineering Mechanics, 2015, 32(11): 8.
[12] 段旻,谢壮宁,石碧青. 下击暴流风场的大气边界层风洞模拟研究 [J]. 建筑结构学报, 2012, 33(3): 6.
DUAN Min, XIE Zhuang-ning, SHI Bi-qing. Wind tunnel simulation study of atmospheric boundary layer of downburst wind field[J]. Journal of Building Structures, 2012, 33(3): 6.
[13] 钟永力,晏致涛,汪之松,等. 下击暴流移动增大效应及带协同流壁面射流模拟方法 [J]. 建筑结构学报, 2021, 42(4): 10.
ZHONG Yong-li, YAN Zhi-tao, WANG Zhi-song, et al. Downburst Motion Increase Effect and Simulation Method of Wall Jet with Coordinated Flow [J]. Journal of Building Structures, 2021, 42(4): 10.
[14] GIOFFRè M, GUSELLA V, GRIGORIU M. Non-gaussian wind pressure on prismatic buildings. I: Stochastic Field [J]. Journal of Structural Engineering, 2001, 127(9): 981-9.
[15] 庄翔,董欣,丁洁民,等. 矩形高层建筑表面风压脉动的非高斯特性研究[J]. 建筑结构学报, 2016, 37: 13-18.
ZHUANG Xiang, DONG Xin, DING Jie-min, et al. Non-Gaustian study of wind pressure pulsation on the surface of rectangular high-rise buildings[J]. Journal of Building Structures, 2016, 37: 13-18.
[16] 叶继红,侯信真. 大跨屋盖脉动风压的非高斯特性研究 [J]. 振动与冲击, 2010, 29(7): 7.
YE Ji-hong, HOU Xin-zhen. Non-Gausterity study on pulsating wind pressure of long-span roof[J]. Journal of Vibration and Shock, 2010, 29(7): 7.
[17] 钟永力,晏致涛,李妍,等. 下击暴流出流段非稳态风场的大气边界层风洞模拟 [J]. 实验流体力学, 2021, 35(6): 8.
ZHONG Yong-li, YAN Zhi-tao, LI Yan, et al. Wind tunnel simulation of atmospheric boundary layer wind field in downburst outflow section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 8.
[18] OSEGUERA R M, BOWLES R L. A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow [J]. 1988.
[19] VICROY, DAN D. Assessment of microburst models for downdraft estimation [J]. Journal of Aircraft, 1992, 29(6): 1781-7.
[20] WOOD G S, KWOK K C S, MOTTERAM N A, et al. Physical and numerical modelling of thunderstorm downbursts [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001.
[21] 孙瑛. 大跨屋盖结构风荷载特性研究 [D]; 哈尔滨工业大学, 2007.
SUN Ying. Study on wind load characteristics of large-span roof structure[D]; Harbin Institute of Technology, 2007.
[22] 张相庭. 结构风工程:理论规范实践 [M]. 结构风工程:理论规范实践, 2006.
ZHANG Xiang-ting. Structural wind engineering:theory and practice[M]. Structural Wind Engineering:Theory and Practice, 2006.
[23] KAREEM A, ZHAO J. Analysis of non-gaussian surge response of tension leg platforms under wind loads [J]. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme, 1994, 116(3): 137-44.
[24] 中华人民共和国住房和城乡建设部. 屋盖结构风荷载标准: JGJ/T 481-2019 [S]. 北京:中国标准出版社, 2019.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Wind load standard of roof structure: JGJ/T 481-2019 [S]. Beijing:Standards Press of China, 2019.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}