基于有约束L1/2范数稀疏正则化的声源识别方法

潘薇1,2,李远文2,3,冯道方1,2,黎敏1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 166-178.

PDF(3772 KB)
PDF(3772 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 166-178.
论文

基于有约束L1/2范数稀疏正则化的声源识别方法

  • 潘薇1,2,李远文2,3,冯道方1,2,黎敏1,2
作者信息 +

Sound source identification method based on constrained L 1/2 norm sparse regularization

  • PAN Wei1,2,LI Yuanwen2,3,FENG Daofang1,2,LI Min1,2
Author information +
文章历史 +

摘要

基于等效源法(Equivalent Source Method, ESM)的近场声全息(Near field acoustic holography, NAH)是一种有效的声源识别技术。然而,针对空间稀疏分布的声源识别问题,传统基于L2范数以及基于L1范数的ESM方法分别存在声源幅值被低估与算法稳定性差等问题。因此,提出了基于有约束L1/2范数稀疏正则化的声源识别方法,该方法具有强稀疏性与强抗干扰的优势,可以解决传统方法的声源识别精度低的问题。通过数值模拟实验以及普通室内的实测实验,验证了方法的有效性。

Abstract

Near field acoustic holography (NAH) based on equivalent source method (ESM) is an effective technology for sound source identification. However, for the identification of spatially sparse sound sources, the traditional ESM methods based on L2-norm and L1-norm have some problems, such as insufficient estimation of sound source amplitude or poor stability of the algorithm. Therefore, a sound source recognition method based on constrained L1/2-norm sparse regularization is proposed. This method has the advantages of strong sparsity and strong anti-interference, which can identify the sound sources more accurately than traditional methods. The numerical simulation experiments and ordinary indoor measured experiments demonstrated the validity of the proposed method.

关键词

声源识别 / 等效源法 / 有约束L1/2范数 / 稀疏正则化

Key words

sound source identification / equivalent source method / constrained L1/2-norm / sparse regularization

引用本文

导出引用
潘薇1,2,李远文2,3,冯道方1,2,黎敏1,2. 基于有约束L1/2范数稀疏正则化的声源识别方法[J]. 振动与冲击, 2024, 43(2): 166-178
PAN Wei1,2,LI Yuanwen2,3,FENG Daofang1,2,LI Min1,2. Sound source identification method based on constrained L 1/2 norm sparse regularization[J]. Journal of Vibration and Shock, 2024, 43(2): 166-178

参考文献

[1] Daniel Fernandez Comesaña, Steven Steltenpool, Graciano Carrillo Pousa. " Helicopter cabin interior noise assessment using Scan & Paint Transfer Path Analysis." European Rotorcraft Forum. 2012. [2] Williams E G , Houston B H , Herdic P C , et al. Interior near-field acoustical holography in flight.[J]. Journal of the Acoustical Society of America, 2000, 108(4):1451-63. [3] Weber M, Kletschkowski T, Samtleben B. Identification of noise sources by means of inverse finite element method[C]//Proceedings, Comsol Conference, Hannover. 2008. [4] Kletschkowski T. Noise Source Localization in an Aircraft Cabin[M]//Adaptive Feed-Forward Control of Low Frequency Interior Noise. Springer, Dordrecht, 2012: 297-308. [5] Koopmann G H, Song L, Fahnline J B. A method for computing acoustic fields based on the principle of wave superposition[J]. The Journal of the Acoustical Society of America, 1989, 86(6): 2433-2438. [6] Williams E G. Regularization methods for near-field acoustical holography[J]. The Journal of the Acoustical Society of America, 2001, 110(4): 1976-1988. [7] Pereira A, Leclere Q. Improving the equivalent source method for noise source identification in enclosed spaces[C]//18th International Congress on Sound and Vibration (ICSV 18). 2011: R31. [8] Pereira A, Leclere Q, Lamotte L, et al. Noise source identification in a vehicle cabin using an iterative weighted approach to the ESM method[C]//25th International Conference on Noise and Vibration Engineering. 2012: 17-19. [9] 向宇,石梓玉,陆静,等.基于波叠加法的非共形近场声全息波函数的构造与选择[J].振动与冲击,2020,39(15):183-192. Xiang Yu, Shi Ziyu, Lu Jing, et al.Construction and selection of nonconformal near-field acoustic holography wave function based on wave superposition method[J]. Journal of Vibration and Shock, 2020, 39(15):183-192. [10] Tan D, Chu Z, Wu G. Robust reconstruction of equivalent source method based near-field acoustic holography using an alternative regularization parameter determination approach[J]. The Journal of the Acoustical Society of America, 2019, 146(1): EL34-EL38. [11] Zhang X Z, Bi C X, Zhang Y B, et al. On the stability of transient nearfield acoustic holography based on the time domain equivalent source method[J]. The Journal of the Acoustical Society of America, 2019, 146(2): 1335-1349. [12] Donoho D L. Compressed sensing[J]. IEEE Transactions on information theory, 2006, 52(4): 1289-1306. [13] Candes E J, Tao T. Decoding by linear programming[J]. IEEE transactions on information theory, 2005, 51(12): 4203-4215. [14] Chardon G, Daudet L, Peillot A, et al. Near-field acoustic holography using sparse regularization and compressive sampling principles[J]. The Journal of the Acoustical Society of America, 2012, 132(3): 1521-1534. [15] Fernandez-Grande E, Xenaki A. The equivalent source method as a sparse signal reconstruction[C]//Inter-noise and noise-con congress and conference proceedings. Institute of noise control engineering, 2015: 5731-5740. [16] Koyama S, Murata N, Saruwatari H. Sparse sound field decomposition for super-resolution in recording and reproduction[J]. The Journal of the Acoustical Society of America, 2018, 143(6): 3780-3795. [17] Hu D Y, Li H B, Hu Y, et al. Sound field reconstruction with sparse sampling and the equivalent source method[J]. Mechanical Systems and Signal Processing, 2018, 108: 317-325. [18] Bi C X, Liu Y, Zhang Y B, et al. Extension of sound field separation technique based on the equivalent source method in a sparsity framework[J]. Journal of Sound and Vibration, 2019, 442: 125-137. [19] Bi C X, Liu Y, Xu L, et al. Sound field reconstruction using compressed modal equivalent point source method[J]. The Journal of the Acoustical Society of America, 2017, 141(1): 73-79. [20] Hald J . Wideband acoustic holography[C]// INTER-NOISE and NOISE-CON Congress and Conference Proceedings. 2014. [21] Zhongming X, Qinghua W, Yansong H, et al. A monotonic two-step iterative shrinkage/thresholding algorithm for sound source identification based on equivalent source method[J]. Applied Acoustics, 2018, 129: 386-396. [22] Chartrand R, Staneva V. Restricted isometry properties and nonconvex compressive sensing[J]. Inverse Problems, 2008, 24(3): 035020. [23] Meinshausen N, Yu B. Lasso-type recovery of sparse representations for high-dimensional data[J]. The annals of statistics, 2009, 37(1): 246-270. [24] Chartrand R, Staneva V. Restricted isometry properties and nonconvex compressive sensing[J]. Inverse Problems, 2008, 24(3): 035020. [25] XU, ZongBen, 1, et al. L1/2 regularization[J]. Science China(Information Sciences), 2010. [26] Qian Y, Jia S, Zhou J, et al. L1/2 sparsity constrained nonnegative matrix factorization for hyperspectral unmixing[C]//2010 International conference on digital image computing: techniques and applications. IEEE, 2010: 447-453. [27] Zhang X, Xu C. L1/2 regularization based low-rank image segmentation model[C]//2013 Ninth International Conference on Computational Intelligence and Security. IEEE, 2013: 382-386. [28] Jiang W, Cui H, Zhang F, et al. Oriented total variation L1/2 regularization[J]. Journal of Visual Communication and Image Representation, 2015, 29: 125-137. [29] Zhang B, Chai H, Yang Z, et al. Application of L1/2 regularization logistic method in heart disease diagnosis[J]. Bio-Medical Materials and Engineering, 2014, 24(6): 3447-3454. [30] Zhang L, Luo A. L1/2 regularization for wavelet frames based few-view CT reconstruction[C]//E3S Web of Conferences. EDP Sciences, 2021, 269. [31] Zong-Ben X U, Hai-Liang G, Yao W, et al. Representative of L1/2 regularization among Lq (0

PDF(3772 KB)

403

Accesses

0

Citation

Detail

段落导航
相关文章

/