桥梁风工程研究中的雷诺数效应研究进展

刘庆宽 1, 2, 3,韩原 3,孙一飞 3,郑云飞 4

振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 187-200.

PDF(2958 KB)
PDF(2958 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 187-200.
论文

桥梁风工程研究中的雷诺数效应研究进展

  • 刘庆宽 1, 2, 3,韩原 3,孙一飞 3,郑云飞 4
作者信息 +

Research progress on the Reynolds number effect in bridge wind engineering

  • LIU Qingkuan1,2,3,HAN Yuan3,SUN Yifei3,ZHENG Yunfei4
Author information +
文章历史 +

摘要

桥梁风工程研究中的雷诺数效应问题是伴随着风洞试验方法产生的一个基础性问题,随着桥梁尺寸的增大其雷诺数也逐渐增大,风洞试验雷诺数和实桥梁雷诺数的差别对试验结果的影响越来越受重视。本文阐述了雷诺数效应问题的由来,回顾了雷诺数效应研究的发展历程,总结了针对圆形断面、矩形断面、主梁断面等不同桥梁结构断面雷诺数效应问题的研究进展,包括结构周围流场、气动力、风致振动随雷诺数的变化,指出了桥梁风工程雷诺数效应研究中尚待解决的问题,为今后该领域的研究提供参考和建议。

Abstract

The Reynolds number effect of bridge wind engineering has been a fundamental problem that came from wind tunnel tests. Reynolds number increase accompanied by the development of bridge size, the effect of the difference between wind tunnel Reynolds number and practical bridge Reynolds number are paid more attention. In this paper, Reynolds number effect origin was expounded. The research history of Reynolds number effect is reviewed. Reynolds number effect research development of bridge structure sections including circular section, rectangular section, main girder section etc were summarized, including flow pattern, aerodynamic force and wind-induced vibration change with Reynolds number. Unsolved problems in Reynolds number effect in bridge wind engineering were pointed out. Some recommendations for future research were put forward.

关键词

桥梁结构 / 风工程 / 雷诺数效应 / 气动力 / 风致振动

Key words

bridge structure / wind engineering / Reynolds number effect / aerodynamic / wind-induced vibration

引用本文

导出引用
刘庆宽 1, 2, 3,韩原 3,孙一飞 3,郑云飞 4. 桥梁风工程研究中的雷诺数效应研究进展[J]. 振动与冲击, 2024, 43(2): 187-200
LIU Qingkuan1,2,3,HAN Yuan3,SUN Yifei3,ZHENG Yunfei4. Research progress on the Reynolds number effect in bridge wind engineering[J]. Journal of Vibration and Shock, 2024, 43(2): 187-200

参考文献

[1] 澎湃新闻. 武汉鹦鹉洲长江大桥出现不明原因晃动, 市应急局派人现场核查[EB/OL]. (2020-4-26) [2022-12-2]. https://www.thepaper.cn/newsDetail_forward_7151856. The Paper. Wuhan Yingwuzhou Yangtze River Bridge shaking for unknown reasons, and the municipal emer-gency bureau sends personnel to check on site[EB/OL]. (2020-4-26) [2022-12-2]. https://www.thep- aper.cn/newsDetail_forward_7151856. (in Chinese) [2] 李艳. 异常晃动的虎门大桥怎么了[N]. 科技日报, 2020-05-06(004). Li Yan. What happened to the shaking Humen Bridge[N]. Science and Technology Daily. 2020-05-06(004). (in Chinese) [3] 澎湃新闻. 舟山西堠门跨海大桥发生涡振, 短时封桥[EB/OL]. (2020-6-19) [2022-12-2]. https://www.thepaper.cn/newsDetail_forward_7914959. The Paper. The Xihoumen Cross sea Bridge in Zhoushan was closed for a short time due to vortex vibration[EB/OL]. (2020-6-19) [2022-12-2]. https://www. thepaper.cn/newsDetail_forward_7914959. (in Chinese) [4] Reynolds O. An experimental investigation of the cir-cumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels[J]. Philosophical Transactions of the Royal society of London, 1883 (174): 935-982. [5] Rayleigh J W S B. The theory of sound[M]. London: Macmillan & Company, 1896. [6] Von Kármán T. Aerodynamics: selected topics in the light of their historical development[M]. Massachusetts: Courier Corporation, 2004. [7] Dryden, Hugh L. The role of transition from laminar to turbulent flow in fluid mechanics[C]//Philadelphia, Commonwealth of Pennsylvania: University of Pennsyl-vania Bicentenial Conference. 1941: 1-13. [8] Roshiko A, Fiszdon W. “On the persistence of transition in the near-wake” Problems in Hydrodynamics and Con-tinunm Mechanics[M]. Philadelphia: SIAM, 1969. [9] Reynolds, O. An experimental investigation of the cir-cumstances which determine whether the motion of water shall be direct or sinuous and the law of resistance in par-allel channels[J]. Proceedings of the Royal Society of London, 1883, 35(224-226): 84-99. [10] Rayleigh, J W S. The theory of sound. 2nd ed[M]. New York: Dover, 1945. [11] Rayleigh L, J W S. Aeolian tones[J]. Philosophical Mag-azine, 6th Series, 1915, 29: 433-444. [12] Karman T V. Aerodynamics[M]. New York: Cornell Uni-versity Press, 1957. [13] Schewe G, Larsen A. Reynolds number effects in the flow around a bluff bridge deck cross section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 829-838. [14] Kubo Y, Nogami C, Yamaguchi E, et al. Study on Reyn-olds number effect of a cable-stayed bridge girder[C]. Wind Engineering into the 21st century. Balkema, Rot-terdam, 1999, 935-940. [15] Matsuda K., Cooper K R et al. An investigation of Reynolds number effects on the steady and unsteady aerodynamic forces on a 1:10 scale bridge deck section model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(7-8): 619-632. [16] Schewe G. Reynolds-number effects in flow around more-or-less bluff bodies[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14-15): 1267-1289. [17] Larose G L, D'Auteuil A. On the Reynolds number sensi-tivity of the aerodynamics of bluff bodies with sharp edges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(5): 365-376. [18] Larose G L, D'Auteuil A. Experiments on 2D rectangular prisms at high Reynolds numbers in a pressurised wind tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6-7): 923-933. [19] 刘庆宽, 乔富贵, 张峰. 考虑雷诺数效应的斜拉索气动力试验研究[J]. 土木工程学报, 2011, 44(11): 59-65. Liu Qingkuan, Qiao Fugui, Zhang Feng. The study on aerodynamic test of stay cable with Reynolds number ef-fect[J]. China Civil Engineering Journal, 2011, 44(11): 59-65. (in Chinese) [20] 中华人民共和国交通部. JTG/T 3360-1—2018, 公路桥梁抗风设计规范[S]. 北京: 人民交通出版社, 2018. Ministry of Transport of the People's Republic of China. JTG/T 3360-1—2018, Wind-resistant Design Specificati- on for Highway Bridges[S]. Beijing: China Communicat- ions Press, 2018. (in Chinese) [21] Roshko A. Experiments on the flow past a circular cylinder at very high Reynolds number[J]. Journal of Fluid Mechanics, 1961, 10(3): 345-356. [22] Achenbach E. Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re =5×106[J]. Journal of Fluid Mechanics, 1968, 34(4): 625-639. [23] HiguchiI H, Kim H J, Farell C. On flow separation and reattachment around a circular cylinder at critical Reynolds numbers[J]. Journal of Fluid Mechanics, 1989, 200(1): 149-171. [24] Strouhal V. Uber eine besondere Art der Tonerregung[J]. Annalen der Physik und Chemie, 3rd series, 1878, 5(10): 216-251. [25] 李国豪. 桥梁结构稳定与振动[M]. 北京: 中国铁道出版社, 1992. Li Guohao. Stability and Vibration of Bridge Struc-tures[M]. Beijing: China Railway Publishing House, 1992. (in Chinese) [26] Ribner H S, Etkin B. Noise research in Canada [C]. // Proceedings of the First International Council of Aero-nautical Sciences. Madrid, Spain: Universidad Com-plutense, 1958. [27] Williamson C H K. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reyn-olds numbers [J]. Journal of Fluid Mechanics, 1989, 206: 579-627. [28] Schewe G. On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers[J]. Journal of Fluid Mechanics, 1983, 133(4): 265-285. [29] Blevins R D. Flow-induced vibration (second edition)[M]. New York: Van Nostrand Reinhold, 1990. [30] Bearman P W. On vortex shedding from a circular cylinder in critical Reynolds number regime[J]. Journal of Fluid Mechanics, 2006, 37(3): 577-580. [31] Achenbach E, Heinecke E. On vortex shedding from smooth and rough cylinders in the range of Reynolds numbers 6×103 to 5×106[J]. Journal of Fluid Mechanics, 2006, 109(109): 239-251. [32] 小西一郎. 钢桥(第十分册)[M]. 张健峰, 译. 北京: 中国铁道出版社, 1982. Ichiro Konishi. Steel Bridges(Volume 10)[M]. Zhang Jianfeng, translated. Beijing: China Railway Publishing House, 1922. (in Chinese) [33] Holscher N, Niemann H J. A review of recent experiments on the flow past circular cylinders[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 33(2): 197-209. [34] Schlichting H. Boundary Layer Theory[M]. Berlin: Springer Verlag, 2016. [35] Simiu E. Wind effects on structures: an introduction to wind engineering[M]. New York:Wiley, 1978. [36] 刘庆宽, 赵桂辰, 安苗, 等. 湍流度对斜拉索雷诺数效应影响的试验研究[J]. 振动与冲击, 2019, 38(23): 96-102. Liu Qingkuan, Zhao Guichen, An Miao, et al. Tests for impacts of turbulence on Reynolds number effect of stayed cables[J]. Vibration and Shock, 2019, 38(23): 96-102. (in Chinese) [37] Fage A, Warsap J H. The effects of turbulence and surface roughness on the drag of a circular cylinder [M]. London: HM Stationery Office, 1930. [38] Achenbach E. Influence of surface roughness on the cross-flow around a circular cylinder[J]. Journal of fluid mechanics, 1971, 46(2): 321-335. [39] Ma W, Liu Q, Macdonald J H G, et al. The effect of sur-face roughness on aerodynamic forces and vibrations for a circular cylinder in the critical Reynolds number range[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 187: 61-72. [40] Preston J H. The airflow around a circular cylinder in the region where the boundary separates from the surface[J]. Philosophical Magazine, 1929, 7(42): 253-273. [41] Gueven O. An experimental and analytical study of sur-face-roughness effects on the mean flow past circular cyl-inders[J]. Thesis Iowa Univ, 1975. [42] Gueven O, Farell C, Patel V C. Surface-roughness effects on the mean flow past circular cylinders[J]. Journal of Fluid Mechanics, 1980, 98(4): 673-701. [43] Scruton. An Introduction to wind effects on structures[M]. Oxford: Oxford University Press, 1981. [44] Almosnino D, McAlister K W. Water-tunnel study of transition flow around circular cylinders[M]. Washington, D.C. : National Aeronautics and Space Administration, Scientific and Technical Informati, 1984. [45] Szepessy S, Bearman P W. Aspect ratio and end plate effects on vortex shedding from a circular cylinder [J]. Journal of Fluid Mechanics, 1992, 234: 191-217. [46] 刘庆宽, 闫煦东, 李聪辉, 等. 不同粗糙度斜拉索气动力特性和风荷载计算方法研究[J]. 振动与冲击, 2017, 36(23): 38-44+57. Liu Qingkuan, Yan Xudong, Li Conghui, et al. Aerody-namic forces and wind loads calculation method for stay-cables with different surface roughness[J]. Vibration and Shock, 2017, 36(23): 38-44+57. (in Chinese) [47] Zdravkovich M M, Bearman P W. Flow around circular cylinders-Volume 1: Fundamentals[J]. Journal of Fluids Engineering, 1998 120(1): 105-106. [48] Norberg C. Flow around a circular cylinder:aspects of fluctuating lift[J]. Journal of Fluids and Structures, 2001: 15(3): 159-179. [49] Norberg C. Fluctuating lift on a circular cylinder:review and new measurements[J]. Journal of Fluids and Structures, 2003, 17(1): 57-96. [50] 刘庆宽, 王晓江, 张磊杰, 等. 非圆截面斜拉索气动性能风洞试验研究[J]. 土木工程学报, 2019, 52(08): 62-71. Liu Qingkuan, Wang Xiaojiang, Zhang Leijie, et al. Study on aerodynamic performance of non-circular cross-sectional cable-stayed cables by wind tunnel test[J]. China Civil Engineering Journal, 2019, 52(08): 62-71. (in Chinese) [51] 刘庆宽, 张磊杰, 王晓江, 等. 表面损伤的斜拉索平均气动阻力特性的试验研究[J]. 振动与冲击, 2020, 39(01): 140-149. Liu Qingkuan, Zhang Leijie, Wang Xiaojiang, et al. Tests for average aerodynamic drag characteristics of stay cables with surface damage[J]. Vibration and Shock, 2020, 39(01): 140-149. (in Chinese) [52] Khalak A, Williamson C H K. Investigation of relative effects of mass and damping in vortex-induced vibration of a circular cylinder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69: 341-350. [53] Raghavan K, Bernitsas M M. Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports[J]. Ocean En-gineering, 2011, 38(5-6): 719-731. [54] Kang Z, Zhang C, Chang R, et al. A numerical investiga-tion of the effects of Reynolds number on vortex-induced vibration of the cylinders with different mass ratios and frequency ratios[J]. International Journal of Naval Archi-tecture and Ocean Engineering, 2019, 11(2): 835-850. [55] Martins F A C, Avila J P J. Effects of the Reynolds num-ber and structural damping on vortex-induced vibrations of elastically-mounted rigid cylinder[J]. International Journal of Mechanical Sciences, 2019, 156: 235-249. [56] Gu J, Fernandes A C, Sales Jr J S. Alternative insight to understand the Reynolds number effects in vortex-induced vibration[J]. Marine Structures, 2020, 69: 102686. [57] Okajima A. Strouhal numbers of rectangular cylinders[J]. Journal of Fluid mechanics, 1982, 123: 379-398. [58] Robertson J M, Cermak J E, Nayak S K. A Reynol-ds-number effect in flow past prismatic bodies[J]. M-echanics Research Communications, 1975, 2(5): 279-282. [59] Nakamura Y, Ohya Y, Ozono S. Experimental and numer-ical analysis of vortex shedding from elongated rectangular cylinders at low Reynolds numbers 200-103[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 65(1): 301-308. [60] Norberg C. Flow around rectangular cylinders: pressure forces and wake frequencies[J]. Journal of wind engi-neering and industrial aerodynamics, 1993, 49(1-3): 187-196. [61] Shimada K, Ishihara T. Prediction of aeroelastic vibration of rectangular cylinders by K- model[J]. Journal of Aer-ospace Engineering, 1999, 12(4): 122-135. [62] Tamai H, Okuda Y, Katsura J. On relation between Reyn-olds number and Kármán vortex formation on a bluff body in natural wind[J]. Journal of Wind Engineering and In-dustrial Aerodynamics, 2001, 89(14-15): 1619-1633. [63] Schewe G. Reynolds-number-effects in flow around a rectangular cylinder with aspect ratio 1: 5[J]. Journal of Fluids and Structures, 2013, 39: 15-26. [64] 杨群, 刘庆宽, 韩瑞, 等. 不同圆角率的方形断面气动特性的雷诺数效应[J]. 振动与冲击, 2020, 39(04): 150-156. Yang Qun, Liu Qingkuan, Han Rui, et al. Reynolds number effect of aerodynamic characteristics of square prism with different rounded corner ratios [J]. Vibration and Shock, 2020, 39(04): 150-156. (in Chinese) [65] 陈海龙. 典型断面涡激振动与涡激力展向相关性研究[D]. 长沙: 湖南大学, 2014. Chen Hailong. The vortex-induced vibration and vor-tex-induced forces spanwise correlation research of typical cross section[D]. Changsha: Hunan University, 2014. (in Chinese) [66] 商东洋. 1:6 矩形断面涡激共振的模型尺度效应试验研究[D]. 长沙: 湖南大学, 2015. Shang Dongyang. Experimental study on model scale effect of vortex-induced vibrations for 1:6 rectangular cross-sections[D]. Changsha: Hunan University, 2015. (in Chinese) [67] Chang Q, Fu Z, Zhang S, et al. Experimental Investigation of Reynolds Number and Spring Stiffness Effects on Vor-tex-Induced Vibration Driven Wind Energy Harvesting Triboelectric Nanogenerator[J]. Nanomaterials, 2022, 12(20): 3595. [68] Barre C, Barnaud G. High Reynolds number simulation techniques and their application to shaped structures model test [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 57(2-3): 145-157. [69] Larose G L, Larsen S V, Larsen A, et al. Sectional model experiments at high Reynolds number for the deck of a 1018 m span cable-stayed bridge[C]//Proceedings of the 11th International Conference on Wind Engineering. Lubbock TX, USA, 2003: 373-380. [70] 金挺, 林志兴. 扁平箱形桥梁断面斯特罗哈数的雷诺数效应研究[J]. 工程力学, 2006(10): 174-179. Jin Ting, Lin Zhixing. Reynolds number effects on Strouhal number of flat-box girder bridge decks[J]. Engi-neering Mechanics, 2006(10): 174-179. (in Chinese) [71] 张伟, 葛耀君. 导流板对大跨桥梁风振响应影响的流场机理[J]. 中国公路学报, 2009, 22(03): 52-57. Zhang Wei, Ge Yaojun. Flow field mechanism of wind induced vibration response of large span bridge influenced by guide vanes [J]. China Journal of Highway and Transport, 2009, 22(03): 52-57. (in Chinese) [72] 刘健新, 崔欣, 李加武. 桥梁断面表面压力分布及Strouhal数的雷诺数效应[J]. 振动与冲击, 2010, 29(4): 146-149. Liu Jianxin, Cui Xin, Li Jiawu. The Reynolds number ef-fect on the surface pressure distribution and the Strouhal number of the bridge section [J]. Vibration and Shock, 2010, 29(4): 146-149. (in Chinese) [73] Li H, Laima S, Jing H. Reynolds number effects on aer-odynamic characteristics and vortex-induced vibration of a twin-box girder[J]. Journal of Fluids and Structures, 2014, 50: 358-375. [74] Schewe G. Nonlinear flow-induced resonances of an H-shaped section [J]. Journal of Fluids and Structures, 1989, 3(4): 327-348. [75] 李加武. 桥梁断面雷诺数效应及其控制研究[D]. 上海: 同济大学, 2003. Li Jiawu. Study on Reynolds number effect of bridge sec-tion and its control[D]. Shanghai: Tongji University, 2003. (in Chinese) [76] Lee S, Kwon S D, Yoon J. Reynolds number sensitivity to aerodynamic forces of twin box bridge girder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 127: 59-68. [77] 张伟, 魏志刚, 杨詠昕, 等. 基于高低雷诺数试验的分离双箱涡振性能对比[J]. 同济大学学报. 2008, 36(1): 6-11. Zhang Wei, Wei Zhigang, Yang Yongxin, et al. Comparison and analysis of vortex induced vibration for twin-box bridge sections based on experiments in different Reynolds numbers[J]. Journal of Tongji University (Natural Science), 2008, 36(1): 6-11. (in Chinese) [78] 赖马树金. 大跨度悬索桥分离式双箱梁涡激振动研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. Laima Shujin. Investigation of vortex-induced vibrations of twin-box girder of long-span suspension bridges[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese) [79] 鲜荣, 廖海黎. 不同尺度扁平箱梁节段模型涡激振动风洞试验[J]. 桥梁建设. 2010(02): 9-13. Xian Rong, Liao Haili. Wind tunnel test for vortex-induced vibration of different geometry scale sectional models of flat box girder[J]. The Journal of Bridge Construction, 2010(02): 9-13. (in Chinese) [80] 崔欣, 李加武, 陈飞, 等. 准流线型桥梁断面涡激共振的雷诺数效应[J]. 长安大学学报, 2011, 31(2): 47-52. Cui Xin, Li Jiawu, Chen Fei, et al. Reynolds number effect on vortex resonance of stream-like bridge section[J]. Journal of Chang’an University(Natural Science Edition), 2011, 31(2): 47-52. (in Chinese) [81] 熊龙, 孙延国, 廖海黎. 钢箱梁在高低雷诺数下的涡振特性研究[J]. 桥梁建设. 2016, 46(5): 65-70. Xiong Long, Sun Yanguo, Liao Haili, et al. Study of vor-tex-induced vibration characteristics of steel box girder at high and low Reynolds numbers[J]. The Journal of Bridge Construction, 2016, 46 (5): 65-70. (in Chinese) [82] 董浩天, 葛耀君, 杨詠昕. 闭口钢箱梁悬索桥涡振多尺度模型风洞试验[J]. 结构工程师, 2018, 34(04): 94-100. Dong Haotian, Ge Yaojun, Yang Yongxin. Multi-scale model tests of vortex-induced vibration of a suspension bridge with closed steel box girders[J]. Structural Engi-neers, 2018, 34(04): 94-100. (in Chinese) [83] 胡传新, 赵林, 陈海兴, 等. 流线闭口箱梁涡振气动力的雷诺数效应研究[J]. 振动与冲击, 2019, 38(12): 118-125. Hu Chuanxin, Zhao Lin, Chen Haixing, et al. Reynolds number effects on aerodynamic forces of a streamlined closed-box girder during vortex-induced vibrations[J]. Vi-bration and Shock, 2019, 38(12): 118-125. (in Chinese) [84] 刘庆宽, 任若松, 孙一飞, 等. 扁平流线型箱梁涡激振动雷诺数效应研究[J]. 振动与冲击, 2022, 41(04): 117-123. Liu Qingkuan, Ren Ruosong, Sun Yifei, et al. A study of Reynolds number effect on vortex-induced vibrations of a flat streamline box girder[J]. Vibration and Shock, 2022, 41(04): 117-123. (in Chinese) [85] 李震. 扁平流线型箱梁涡激振动特性及其雷诺数效应研究[D]. 石家庄: 石家庄铁道大学, 2022. Li Zhen. Study on Vortex Induced Vibration Performance and Reynolds Number Effect of Flat Streamlined Box Girder[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2022. (in Chinese) [86] 杨咏漪, 陈克坚, 李明水, 等. 韩家沱长江大桥高低雷诺数涡激振动试验研究[J]. 桥梁建设. 2015, 45(03): 76-81. Yang Yongyi, Chen Kejian, Li Mingshui, et al. Test study of vortex-induced vibration of Hanjiatuo Yangtze River bridge at high and low Reynolds numbers[J]. The Journal of Bridge Construction, 2015, 45(03): 76-81. (in Chinese) [87] 许福友, 陈艾荣, 张哲, 等. 确定桥梁模型颤振临界风速的实用方法[J]. 振动与冲击, 2008, 27(12): 97-100. Xu Fuyou, Chen Airong, Zhang Zhe, et al. Pratical tech-nique for determining critical flutter wind speed of bridge model[J]. Journal of Vibration and Shock, 2008, 27(12): 97-100. (in Chinese) [88] 陶奇, 廖海黎, 李明水等. 苏通长江大桥主梁断面三分力系数的雷诺数效应[J]. 实验流体力学, 2010, 24(2): 51-54. Tao Qi, Liao Haili, Li Mingshui, et al. Sutong Yangtze River bridge deck with three component coefficients Reynolds number effect[J]. Experimental fluid mechanics, 2010, 24(2): 54-56. (in Chinese) [89] 范洁川. 风洞试验手册[M]. 北京: 航空工业出版社, 2002. Fan Jiechuan. Handbook of Wind Tunnel Test[M]. Beijing: Aviation Industry Press, 2002. (in Chinese) [90] 李会知, 叶倩. 上海电视塔球形部件的压力分布和气动力[J]. 实验流体力学, 1997, 12(3): 416-420. Li Huizhi, Ye Qian. The pressure distribution and power of Shanghai TV Tower spherical components[J]. Experi-mental mechanics, 1997, 12(3): 416-420. (in Chinese) [91] 操金鑫, 赵林, 葛耀君, 等. 双曲线圆截面建筑结构雷诺数效应模拟实践[J]. 实验流体力学, 2009, 23(4): 46-50. Cao Jinxin, Zhao Lin, Ge Yaojun, et al. Reynolds number effect simulation of building structure with hyperbolic circular section[J]. Experimental fluid mechanics, 2009, 23(4): 46-50. (in Chinese)

PDF(2958 KB)

491

Accesses

0

Citation

Detail

段落导航
相关文章

/