非定常空化涡旋结构演化及压力波机制的研究

王子豪1,孙铁志1,张桂勇1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 22-31.

PDF(2493 KB)
PDF(2493 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 22-31.
论文

非定常空化涡旋结构演化及压力波机制的研究

  • 王子豪1,孙铁志1,张桂勇1,2
作者信息 +

Investigation on transient unsteady cavitation vortex structures and the pressure wave dynamics

  • WANG Zihao1,SUN Tiezhi1,ZHANG Guiyong1,2
Author information +
文章历史 +

摘要

压力波机制是空化流动机制的一种,压力波的产生和传播是空化不稳定的重要来源。本文基于可压缩流体求解器和分离涡模拟(DES)研究了三维水翼空化流动。结果表明:压力波是由先前脱落的云空泡溃灭产生的,其传播过程会导致片状空泡的收缩和水翼表面高压力脉冲。压力波的产生会强烈扰乱涡旋的运动,水翼表面上的稳定涡旋结构被卷起,并且被小尺度涡旋结构所替代。采用动力学模态分解方法分析流场特征,压力波效应和附着片状空泡的演变占据了流场的主要能量。

Abstract

The pressure wave mechanism is one of the cavitation flow mechanisms. The generation and propagation of pressure wave is an important source of cavitation instability. In this paper, three-dimensional hydrofoil cavitation flow is studied based on compressible fluid solver and detached-eddy simulation (DES). The results show that the pressure wave is generated by the pressure wave generated by the collapse of the cloud cavity. The propagation process of the pressure wave causes the shorten of the sheet cavity and the high-pressure pulse on the surface of the hydrofoil. The pressure wave is strongly disturb the motion of the vortex. The stable vortex structure on the surface of the hydrofoil is rolled up and replaced by the small-scale vortex structure. The dynamic mode decomposition method is used to analyze the characteristics of the flow field. The first-order mode represents the basic framework and main characteristics of the flow field. The pressure wave effect and the evolution of attached sheet cavity occupy the main energy of the flow field.

关键词

非定常空化 / 可压缩 / 涡旋结构 / 压力波 / 动力学模态分解

Key words

unsteady cavitation / compressibility / vortex structure / pressure wave / dynamic mode decomposition

引用本文

导出引用
王子豪1,孙铁志1,张桂勇1,2. 非定常空化涡旋结构演化及压力波机制的研究[J]. 振动与冲击, 2024, 43(2): 22-31
WANG Zihao1,SUN Tiezhi1,ZHANG Guiyong1,2. Investigation on transient unsteady cavitation vortex structures and the pressure wave dynamics[J]. Journal of Vibration and Shock, 2024, 43(2): 22-31

参考文献

[1] Brennen C E. Fundamentals of multiphase flow[M]. Cambridge University Press, 2005. [2] 于安,王逸夫,雷婷婷.绕振动水翼空化发展及水动力学特性研究[J].振动与冲击,2022,41(13):265-274. YU An,WANG Yifu,LEI Tingting. Cavitation development and hydrodynamic characteristics around oscillating hydrofoil. [J]. Journal of vibration and shock, 2022,41(13):265-274. [3] 王子豪. 绕水翼局部空化流动演变机理及通气影响数值计算研究[D].大连:大连理工大学,2020. [4] 王一伟, 黄晨光. 高速航行体水下发射水动力学研究进展[J]. 力学进展, 2018, 48: 259-298. Wang Yiwei, Huang Chenguang. Research progress on hydrodynamics of high speed vehicles in the underwater launching process[J]. Advances in Mechanics, 2018, 48: 259-298. [5] 张德胜,顾琦,周强,等. 混流泵启动过程非稳态空化的试验研究[J]. 振动与冲击,2021,40(07):135-141+192. ZHANG Desheng, GU Qi, ZHOU Qiang. et al. Tests for unsteady cavitation of mixed flow pump during start-up [J]. Journal of vibration and shock, 2021,40(07):135-141+192. [6] 赵宇, 王国玉, 黄彪,等. 非定常空化流动涡旋运动及其流体动力特性[J]. 力学学报, 2014, 46(2): 191-200. ZHAO Yu, WANG Guoyu, HUANG Biao, et al. Study of turbulent vortex and hydraulic dynamics in transient sheet/cloud cavitating flows[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 191-200. [7] 魏小玲,冯永保,刘珂,等 基于EEMD的圆弧齿轮泵空化流动及振动特性试验研究[J]. 振动与冲击,2022,41(10):90-98. WEI Xiaoling, FENG Yongbao, LIU Ke, et al. Experimental study on the cavitation flow and vibration characteristics of circular arc gear pumps based on EEMD[J]. Journal of vibration and shock, 2022,41(10):90-98. [8] 王巍, 张庆典, 唐滔,等. 射流对绕水翼云空化流动抑制机理研究[J].力学学报, 2020, 52(1): 12-23. WANG Wei, ZHANG Qingdian, TANG Tao, et al. Mechanism investigation of water injection on suppressing hydrofoil cloud cavitation flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 12-23. [9] Arndt, R E A, Song, C C S, Kjeldsen, M, Instability of Partial Cavitation: A Numerical/Experimental Approach[C]// Symposium on Naval Hydrodynamics. 2000. [10] Ganesh H, Mäkiharju S A, Ceccio S L. Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities[J]. Journal of Fluid Mechanics, 2016, 802: 37-78. [11] Bhatt M, Mahesh K. Numerical investigation of partial cavitation regimes over a wedge using large eddy simulation[J]. International Journal of Multiphase Flow, 2019, 122: 103155. [12] Zhang Guangjiang, Zhang Desheng, Ge Mingming, et al. Experimental investigation of three distinct mechanisms for the transition from sheet to cloud cavitation[J], International Journal of Heat and Mass Transfer, 2022, 197: 0017-9310. [13] Leroux J B, Astolfi J A, Billard J Y. An experimental study of unsteady partial cavitation[J]. Journal of Fluids Engineering, 2004, 126(1): 94-10113. [14] 骆寅,董健,韩岳江,袁建平. 离心泵空化下的转速瞬变特性试验研究[J]. 振动与冲击,2021,40(01):23-28. LUO Yin, DONG Jian, HAN Yuejiang, et al. Tests for rotating speed transient characteristics of centrifugal pump under cavitation[J]. Journal of vibration and shock, 2021,40(01):23-28. [15] Ji Bin, Luo Xianwu, Arndt REA, et al. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil[J]. International Journal of Multiphase Flow, 2015, 68: 121-134. [16] Shamsborhan H, Coutier-Delgosha O, Caignaert G, et al, Experimental determination of the speed of sound in cavitating flows[J], Experiments in Fluids, 2010, 49(6): 1359-1373. [17] 王畅畅, 黄彪, 王国玉. 空化可压缩流动空穴溃灭激波特性研究[J]. 力学学报, 2018, 50(5): 990-1002. Wang Changchang, Wang Guoyu, Huang Biao. Numerical simulation of shock wave dynamics in transient turbulent cavitating flows[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 990-1002. [18] Huang Biao, Ducoin A, Young Y L. Physical and numerical investigation of cavitating flows around a pitching hydrofoil[J]. Physics of Fluids, 2013, 25(10):102109. [19] Roohi E, Pendar M R, Rahimi A. Simulation of three-dimensional cavitation behind a disk using various turbulence and mass transfer models[J]. Applied Mathematical Modelling, 2015:12-3, 32, 42-3 passim. [20] Gao Guo Hua, Zhao Jing, Ma Fei, et al. Hybrid RANS-LES Modeling for Unsteady Cavitating Flow Simulation[J]. Applied Mechanics & Materials, 2012, 152-154:1187-1190. [21] Wang, Zihao, Zhang, Xin, Wang, Yaxing, et al. Comparative study between turbulence models in unsteady cavitating flow with special emphasis on shock wave propagation[J]. Ocean Engineering, 240(15). [22] Ji Bin , Luo Xianwu , Wu Yulin , et al. Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil[J]. International Journal of Multiphase Flow, 2013, 51:33-43. [23] Sun, Teizhi, Wang, Zihao, Zou, Li, et al., Numerical investigation of positive effects of ventilated cavitation around a NACA66 hydrofoil[J]. Ocean Engineering, 2020, 197. [24] Schmid P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656: 5-28. [25] Liu Ming, Tan Lei, Cao Shuliang. Dynamic mode decomposition of cavitating flow around ALE 15 hydrofoil[J]. Renewable Energy, 2019, 139: 214-227. [26] 谢庆墨, 陈亮, 张桂勇等. 基于动力学模态分解法的绕水翼非定常空化流场演化分析[J]. 力学学报, 2020, 52(4): 1045-1054. Xie Qingmo, Chen Liang, Zhang Guiyong, et al. Analysis of unsteady cavitation flowover hydrofoil based on dynamic mode decomposition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(4): 1045-1054. [27] Core RH. Underwater Explosion[M]. Princeton: Princeton Univ. Press,1948 [28] Menter F R, Rumsey C L. Assessment of two-equation turbulence models for transonic flows[C]. Colorado Springs, CO, United States:American Institute of Aeronautics and Astronautics Inc, AIAA,1994, [29] Schnerr G H, Sauer J. Physical and numerical modeling of unsteady cavitation dynamics[C]. Fourth International Conference on Multiphase Flow, New Orleans, USA,2001. [30] Sagaut P. Large Eddy Simulation for Incompressible Flows: An Introduction[J]. Scientific Computation, 2001, 12(10):1745-1746. [31] Haller G. An objective definition of a vortex[J]. Journal of Fluid Mechanics, 2005, 525:1-26.

PDF(2493 KB)

358

Accesses

0

Citation

Detail

段落导航
相关文章

/