单套索人工肌肉的力学特性建模及实验分析

杨明星1,2,夏玉磊2,刘庆运1,2,汤国庆2,郑近德1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 244-253.

PDF(2896 KB)
PDF(2896 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 244-253.
论文

单套索人工肌肉的力学特性建模及实验分析

  • 杨明星1,2,夏玉磊2,刘庆运1,2,汤国庆2,郑近德1,2
作者信息 +

Mechanical modeling and experimental analysis of a single tendon-sheath artificial muscle

  • YANG Mingxing1,2,XIA Yulei2,LIU Qingyun1,2,TANG Guoqing2,ZHENG Jinde1,2
Author information +
文章历史 +

摘要

套索传动机构因具有传动路径灵活、柔顺性强等特点而被广泛应用于机器人传动系统,尤其是在机器人的仿生设计中经常将套索传动与人工肌肉相结合实现远距离柔顺驱动。然而套索传动系统中存在明显的非线性因素,这对套索人工肌肉整体传递特性有较大影响。为探究套索人工肌肉传递特性的影响因素,基于Cloulomb摩擦模型及Lugre摩擦模型理论分别建立了传动系统的静态模型和动态模型,并搭建了试验台探究与验证其力/位移的传递特性,实验结果与仿真结果基本一致。实验结果表明,全曲率和摩擦力是影响套索传动效率的主要因素,并联弹性元刚度过大和串联弹性元刚度过小均会降低套索人工肌肉的效率。本文的研究为基于Hill模型的套索人工肌肉的应用提供了理论指导。

Abstract

Tendon-sheath transmission system is widely used in robot drive system because of its flexible transmission path and strong flexibility, especially in the bionic design of robot, the combination of lasso drive and artificial muscle is often used to achieve long-distance flexible drive. However, there are obvious nonlinear factors in the lasso drive system, which have a great impact on the overall transmission characteristics of the lasso artificial muscle. In order to explore the influencing factors of the transmission characteristics of artificial muscle of lasso, the static and dynamic models of the transmission system are established based on the Cloulomb friction model and the Lugre friction model theory, and a test bench was built to explore and verify the transmission characteristics of force/displacement. The experimental results are basically consistent with the simulation results. The results show that the total curvature and the friction force are the main factors affecting the transmission efficiency of the lasso, and the large stiffness of the parallel spring and the small stiffness of the series spring are the two main factors leading to the low efficiency of the artificial muscle of the lasso. The research in this paper provides theoretical guidance for the application of artificial muscle of lasso based on Hill model.

关键词

套索传动 / 人工肌肉 / 传递特性 / 建模分析

Key words

Tendon-sheath transmission / Artificial muscle / Transfer characteristics / Modeling analysis

引用本文

导出引用
杨明星1,2,夏玉磊2,刘庆运1,2,汤国庆2,郑近德1,2. 单套索人工肌肉的力学特性建模及实验分析[J]. 振动与冲击, 2024, 43(2): 244-253
YANG Mingxing1,2,XIA Yulei2,LIU Qingyun1,2,TANG Guoqing2,ZHENG Jinde1,2. Mechanical modeling and experimental analysis of a single tendon-sheath artificial muscle[J]. Journal of Vibration and Shock, 2024, 43(2): 244-253

参考文献

[1] 魏敦文,葛文杰,高涛. 仿生灵感下的弹性驱动器的研究综述[J]. 机器人, 2017, 39(4): 541-550. WEI Dunwen, GE Wenjie, GAU Tao. Review of elastic actuator research from bionic inspiration [J]. Robot, 2017, 39(4): 541-550. [2] Di Natali C, Poliero T, Sposito M, et al. Design and evaluation of a soft assistive lower limb exoskeleton[J]. Robotica, 2019, 37(12): 2014-2034. [3] 尹猛, 徐志刚, 赵志亮, 等. 基于套索传动的五指灵巧手设计与主从控制[J]. 中国机械工程, 2021, 32(08):951-959. YIN Meng, XU Zhigang, ZHAO Zhiliang, et al. Design and master-slave control of dexterous hands with five fingers based on tendon-sheath transmission[J]. China Mechanical Engineering, 2021,32(08):951-959. [4] 齐飞, 余世刚, 高书苑, 等. 考虑非线性摩擦的绳驱动连续体机器人动力学研究 [J]. 农业机械学报, 2021, 52(4): 375-383+401. QI Fei, YU Shigang, GAO Shuyuan, et al. Dynamic of cable-driven continuum robot with nonlinear friction model [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 375-383+401. [5] 张龙. 空间圈套式绳索捕获动力学建模及接触碰撞分析[J]. 振动与冲击, 2019, 38(10):71-78. ZHANG Long. Dynamics modelling and contact-impact analysis during space snare capture [J]. Journal of Vibration and Shock, 2019, 38(10):71-78. [6] Zhang Q, Yang M, Shen X, et al. Muscle-like contraction control of tendon-sheath artificial muscle[J]. Mechatronics, 2021, 77:102584. [7] Palli G, Borghesan G, Melchiorri C. Modeling, identification, and control of tendon-based actuation systems[J]. IEEE Transactions on Robotics, 2011, 28(2): 277-290. [8] Do TN, Tjahjowidodo T, Lau M W S, et al. An investigation of friction-based tendon sheath model appropriate for control purposes[J]. Mechanical Systems and Signal Processing, 2014, 42(1-2): 97-114. [9] Norouzi-Ghazbi S, Janabi-Sharifi F. Dynamic modeling and system identification of internally actuated, small-sized continuum robots[J]. Mechanism and Machine Theory, 2020, 154: 104043. [10] Rho E, Kim D, Lee H, et al. Learning fingertip force to grasp deformable objects for soft wearable robotic glove with TSM[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 8126-8133. [11] 陈林,王兴松.双套索耦合传动系统建模与分析[J].机械工程学报,2014,50(19):24-31. CHEN Lin, WANG Xingsong. Modeling and analysis of tendon-sheath transmission system in pull-pull configuration[J]. Journal of Mechanical Engineering, 2020, 39(02):22-31. [12] Zhang Q, Wang X S, Tian M Q, et al. Modeling of novel compound tendon-sheath artificial muscle inspired by Hill muscle model[J]. IEEE Transactions on Industrial Electronics, 2017, 65(8): 6372-6381. [13] 张琦, 田梦倩, 李伟强, 等. 复式套索人工肌肉驱动的下肢外骨骼的运动控制[J]. 机器人, 2021, 43(2): 214-223. ZHANG Qi, TIAN MENG Qian, LI Weiqiang, et al. Motion control of a lower-limb exoskeleton actuated by compound tendon-sheath artificial muscles, Robot, 2021, 43(2): 214-223. [14] Di Natali C, Poliero T, Sposito M, et al. Design and evaluation of a soft assistive lower limb exoskeleton[J]. Robotica, 2019, 37(12): 2014-2034. [15] 李清桓, 段清娟, 李帆, 等. 绳牵引机器人加入弹簧后刚度分析[J]. 振动与冲击, 2017, 36(10): 197-202. LI Qinghuan, DUAN Qingjua,LI Fan, et al. Stiffness analysis of a cable-driven parallel robot by adding springs [J]. Journal of Vibration and Shock, 2017, 36(10): 197-202. [16] 刘自文, 赵亮, 于鹏, 等. 柔性外骨骼手的抓取力控制方法[J]. 机器人, 2019, 41(4):483-492. LIU Ziwen, ZHAO Liang, YU Peng, et al. A Control Method of Grasping Force for Soft Exoskeleton Hand[J]. Robot, 2019, 41(4):483-492. [17] Ziyan Shao, Qingcong Wu, Bai Chen, et al. Modeling and inverse control of a compliant single-tendon-sheath artificial tendon actuator with bending angle compensation[J]. Mechatronics, 2019, 63:102262. [18] Schmitt S, Günther M, Rupp T, et al. Theoretical hill-type muscle and stability: numerical model and application[J]. Computational and Mathematical Methods in Medicine, 2013, 2013:570878.

PDF(2896 KB)

462

Accesses

0

Citation

Detail

段落导航
相关文章

/